Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\frac{14730}{30}=\left(\frac{7\left(1+\frac{0.335}{12}\right)}{\frac{0.335}{12}}\right)^{n}
Divide both sides by 30.
491=\left(\frac{7\left(1+\frac{0.335}{12}\right)}{\frac{0.335}{12}}\right)^{n}
Divide 14730 by 30 to get 491.
491=\left(\frac{7\left(1+\frac{335}{12000}\right)}{\frac{0.335}{12}}\right)^{n}
Expand \frac{0.335}{12} by multiplying both numerator and the denominator by 1000.
491=\left(\frac{7\left(1+\frac{67}{2400}\right)}{\frac{0.335}{12}}\right)^{n}
Reduce the fraction \frac{335}{12000} to lowest terms by extracting and canceling out 5.
491=\left(\frac{7\times \frac{2467}{2400}}{\frac{0.335}{12}}\right)^{n}
Add 1 and \frac{67}{2400} to get \frac{2467}{2400}.
491=\left(\frac{\frac{17269}{2400}}{\frac{0.335}{12}}\right)^{n}
Multiply 7 and \frac{2467}{2400} to get \frac{17269}{2400}.
491=\left(\frac{\frac{17269}{2400}}{\frac{335}{12000}}\right)^{n}
Expand \frac{0.335}{12} by multiplying both numerator and the denominator by 1000.
491=\left(\frac{\frac{17269}{2400}}{\frac{67}{2400}}\right)^{n}
Reduce the fraction \frac{335}{12000} to lowest terms by extracting and canceling out 5.
491=\left(\frac{17269}{2400}\times \frac{2400}{67}\right)^{n}
Divide \frac{17269}{2400} by \frac{67}{2400} by multiplying \frac{17269}{2400} by the reciprocal of \frac{67}{2400}.
491=\left(\frac{17269}{67}\right)^{n}
Multiply \frac{17269}{2400} and \frac{2400}{67} to get \frac{17269}{67}.
\left(\frac{17269}{67}\right)^{n}=491
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{17269}{67}\right)^{n})=\log(491)
Take the logarithm of both sides of the equation.
n\log(\frac{17269}{67})=\log(491)
The logarithm of a number raised to a power is the power times the logarithm of the number.
n=\frac{\log(491)}{\log(\frac{17269}{67})}
Divide both sides by \log(\frac{17269}{67}).
n=\log_{\frac{17269}{67}}\left(491\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).