Evaluate
\frac{477}{16}=29.8125
Factor
\frac{3 ^ {2} \cdot 53}{2 ^ {4}} = 29\frac{13}{16} = 29.8125
Share
Copied to clipboard
14+28\times \frac{9}{16}+\left(\frac{1}{4}\right)^{2}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
14+\frac{28\times 9}{16}+\left(\frac{1}{4}\right)^{2}
Express 28\times \frac{9}{16} as a single fraction.
14+\frac{252}{16}+\left(\frac{1}{4}\right)^{2}
Multiply 28 and 9 to get 252.
14+\frac{63}{4}+\left(\frac{1}{4}\right)^{2}
Reduce the fraction \frac{252}{16} to lowest terms by extracting and canceling out 4.
\frac{56}{4}+\frac{63}{4}+\left(\frac{1}{4}\right)^{2}
Convert 14 to fraction \frac{56}{4}.
\frac{56+63}{4}+\left(\frac{1}{4}\right)^{2}
Since \frac{56}{4} and \frac{63}{4} have the same denominator, add them by adding their numerators.
\frac{119}{4}+\left(\frac{1}{4}\right)^{2}
Add 56 and 63 to get 119.
\frac{119}{4}+\frac{1}{16}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{476}{16}+\frac{1}{16}
Least common multiple of 4 and 16 is 16. Convert \frac{119}{4} and \frac{1}{16} to fractions with denominator 16.
\frac{476+1}{16}
Since \frac{476}{16} and \frac{1}{16} have the same denominator, add them by adding their numerators.
\frac{477}{16}
Add 476 and 1 to get 477.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}