Factor
\left(2z-7\right)\left(7z-2\right)
Evaluate
\left(2z-7\right)\left(7z-2\right)
Share
Copied to clipboard
a+b=-53 ab=14\times 14=196
Factor the expression by grouping. First, the expression needs to be rewritten as 14z^{2}+az+bz+14. To find a and b, set up a system to be solved.
-1,-196 -2,-98 -4,-49 -7,-28 -14,-14
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 196.
-1-196=-197 -2-98=-100 -4-49=-53 -7-28=-35 -14-14=-28
Calculate the sum for each pair.
a=-49 b=-4
The solution is the pair that gives sum -53.
\left(14z^{2}-49z\right)+\left(-4z+14\right)
Rewrite 14z^{2}-53z+14 as \left(14z^{2}-49z\right)+\left(-4z+14\right).
7z\left(2z-7\right)-2\left(2z-7\right)
Factor out 7z in the first and -2 in the second group.
\left(2z-7\right)\left(7z-2\right)
Factor out common term 2z-7 by using distributive property.
14z^{2}-53z+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-\left(-53\right)±\sqrt{\left(-53\right)^{2}-4\times 14\times 14}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\left(-53\right)±\sqrt{2809-4\times 14\times 14}}{2\times 14}
Square -53.
z=\frac{-\left(-53\right)±\sqrt{2809-56\times 14}}{2\times 14}
Multiply -4 times 14.
z=\frac{-\left(-53\right)±\sqrt{2809-784}}{2\times 14}
Multiply -56 times 14.
z=\frac{-\left(-53\right)±\sqrt{2025}}{2\times 14}
Add 2809 to -784.
z=\frac{-\left(-53\right)±45}{2\times 14}
Take the square root of 2025.
z=\frac{53±45}{2\times 14}
The opposite of -53 is 53.
z=\frac{53±45}{28}
Multiply 2 times 14.
z=\frac{98}{28}
Now solve the equation z=\frac{53±45}{28} when ± is plus. Add 53 to 45.
z=\frac{7}{2}
Reduce the fraction \frac{98}{28} to lowest terms by extracting and canceling out 14.
z=\frac{8}{28}
Now solve the equation z=\frac{53±45}{28} when ± is minus. Subtract 45 from 53.
z=\frac{2}{7}
Reduce the fraction \frac{8}{28} to lowest terms by extracting and canceling out 4.
14z^{2}-53z+14=14\left(z-\frac{7}{2}\right)\left(z-\frac{2}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{2} for x_{1} and \frac{2}{7} for x_{2}.
14z^{2}-53z+14=14\times \frac{2z-7}{2}\left(z-\frac{2}{7}\right)
Subtract \frac{7}{2} from z by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
14z^{2}-53z+14=14\times \frac{2z-7}{2}\times \frac{7z-2}{7}
Subtract \frac{2}{7} from z by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
14z^{2}-53z+14=14\times \frac{\left(2z-7\right)\left(7z-2\right)}{2\times 7}
Multiply \frac{2z-7}{2} times \frac{7z-2}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
14z^{2}-53z+14=14\times \frac{\left(2z-7\right)\left(7z-2\right)}{14}
Multiply 2 times 7.
14z^{2}-53z+14=\left(2z-7\right)\left(7z-2\right)
Cancel out 14, the greatest common factor in 14 and 14.
x ^ 2 -\frac{53}{14}x +1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 14
r + s = \frac{53}{14} rs = 1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{53}{28} - u s = \frac{53}{28} + u
Two numbers r and s sum up to \frac{53}{14} exactly when the average of the two numbers is \frac{1}{2}*\frac{53}{14} = \frac{53}{28}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{53}{28} - u) (\frac{53}{28} + u) = 1
To solve for unknown quantity u, substitute these in the product equation rs = 1
\frac{2809}{784} - u^2 = 1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 1-\frac{2809}{784} = -\frac{2025}{784}
Simplify the expression by subtracting \frac{2809}{784} on both sides
u^2 = \frac{2025}{784} u = \pm\sqrt{\frac{2025}{784}} = \pm \frac{45}{28}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{53}{28} - \frac{45}{28} = 0.286 s = \frac{53}{28} + \frac{45}{28} = 3.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}