Solve for x_6
x_{6}=\frac{y^{3}x^{6}}{y_{3}}
y_{3}\neq 0\text{ and }y\neq 0\text{ and }x\neq 0
Solve for x (complex solution)
x\in e^{\frac{\pi i}{3}}y^{-\frac{1}{2}}\sqrt[6]{x_{6}}\sqrt[6]{y_{3}},y^{-\frac{1}{2}}\sqrt[6]{x_{6}}\sqrt[6]{y_{3}},e^{\frac{2\pi i}{3}}y^{-\frac{1}{2}}\sqrt[6]{x_{6}}\sqrt[6]{y_{3}},-y^{-\frac{1}{2}}\sqrt[6]{x_{6}}\sqrt[6]{y_{3}},e^{\frac{4\pi i}{3}}y^{-\frac{1}{2}}\sqrt[6]{x_{6}}\sqrt[6]{y_{3}},e^{\frac{5\pi i}{3}}y^{-\frac{1}{2}}\sqrt[6]{x_{6}}\sqrt[6]{y_{3}}
y\neq 0\text{ and }y_{3}\neq 0\text{ and }x_{6}\neq 0
Solve for x
x=\sqrt[6]{\frac{x_{6}y_{3}}{y^{3}}}
x=-\sqrt[6]{\frac{x_{6}y_{3}}{y^{3}}}\text{, }\left(y<0\text{ and }x_{6}<0\text{ and }y_{3}>0\right)\text{ or }\left(y>0\text{ and }x_{6}>0\text{ and }y_{3}>0\right)\text{ or }\left(y<0\text{ and }y_{3}<0\text{ and }x_{6}>0\right)\text{ or }\left(y>0\text{ and }x_{6}<0\text{ and }y_{3}<0\right)
Graph
Share
Copied to clipboard
14x^{7}y^{4}=-2x_{6}y_{3}\left(-7\right)xy
Multiply both sides of the equation by -7xy.
14x^{7}y^{4}=14x_{6}y_{3}xy
Multiply -2 and -7 to get 14.
14x_{6}y_{3}xy=14x^{7}y^{4}
Swap sides so that all variable terms are on the left hand side.
x_{6}y_{3}xy=x^{7}y^{4}
Cancel out 14 on both sides.
xyy_{3}x_{6}=y^{4}x^{7}
The equation is in standard form.
\frac{xyy_{3}x_{6}}{xyy_{3}}=\frac{y^{4}x^{7}}{xyy_{3}}
Divide both sides by y_{3}xy.
x_{6}=\frac{y^{4}x^{7}}{xyy_{3}}
Dividing by y_{3}xy undoes the multiplication by y_{3}xy.
x_{6}=\frac{y^{3}x^{6}}{y_{3}}
Divide x^{7}y^{4} by y_{3}xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}