Solve for x
x = \frac{\sqrt{519} - 15}{7} \approx 1.111653071
x=\frac{-\sqrt{519}-15}{7}\approx -5.397367357
Graph
Share
Copied to clipboard
14x^{2}+60x-84=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\times 14\left(-84\right)}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, 60 for b, and -84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 14\left(-84\right)}}{2\times 14}
Square 60.
x=\frac{-60±\sqrt{3600-56\left(-84\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-60±\sqrt{3600+4704}}{2\times 14}
Multiply -56 times -84.
x=\frac{-60±\sqrt{8304}}{2\times 14}
Add 3600 to 4704.
x=\frac{-60±4\sqrt{519}}{2\times 14}
Take the square root of 8304.
x=\frac{-60±4\sqrt{519}}{28}
Multiply 2 times 14.
x=\frac{4\sqrt{519}-60}{28}
Now solve the equation x=\frac{-60±4\sqrt{519}}{28} when ± is plus. Add -60 to 4\sqrt{519}.
x=\frac{\sqrt{519}-15}{7}
Divide -60+4\sqrt{519} by 28.
x=\frac{-4\sqrt{519}-60}{28}
Now solve the equation x=\frac{-60±4\sqrt{519}}{28} when ± is minus. Subtract 4\sqrt{519} from -60.
x=\frac{-\sqrt{519}-15}{7}
Divide -60-4\sqrt{519} by 28.
x=\frac{\sqrt{519}-15}{7} x=\frac{-\sqrt{519}-15}{7}
The equation is now solved.
14x^{2}+60x-84=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
14x^{2}+60x-84-\left(-84\right)=-\left(-84\right)
Add 84 to both sides of the equation.
14x^{2}+60x=-\left(-84\right)
Subtracting -84 from itself leaves 0.
14x^{2}+60x=84
Subtract -84 from 0.
\frac{14x^{2}+60x}{14}=\frac{84}{14}
Divide both sides by 14.
x^{2}+\frac{60}{14}x=\frac{84}{14}
Dividing by 14 undoes the multiplication by 14.
x^{2}+\frac{30}{7}x=\frac{84}{14}
Reduce the fraction \frac{60}{14} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{30}{7}x=6
Divide 84 by 14.
x^{2}+\frac{30}{7}x+\left(\frac{15}{7}\right)^{2}=6+\left(\frac{15}{7}\right)^{2}
Divide \frac{30}{7}, the coefficient of the x term, by 2 to get \frac{15}{7}. Then add the square of \frac{15}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{30}{7}x+\frac{225}{49}=6+\frac{225}{49}
Square \frac{15}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{30}{7}x+\frac{225}{49}=\frac{519}{49}
Add 6 to \frac{225}{49}.
\left(x+\frac{15}{7}\right)^{2}=\frac{519}{49}
Factor x^{2}+\frac{30}{7}x+\frac{225}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{7}\right)^{2}}=\sqrt{\frac{519}{49}}
Take the square root of both sides of the equation.
x+\frac{15}{7}=\frac{\sqrt{519}}{7} x+\frac{15}{7}=-\frac{\sqrt{519}}{7}
Simplify.
x=\frac{\sqrt{519}-15}{7} x=\frac{-\sqrt{519}-15}{7}
Subtract \frac{15}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}