Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

14x^{2}+2x=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
14x^{2}+2x-3=3-3
Subtract 3 from both sides of the equation.
14x^{2}+2x-3=0
Subtracting 3 from itself leaves 0.
x=\frac{-2±\sqrt{2^{2}-4\times 14\left(-3\right)}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, 2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 14\left(-3\right)}}{2\times 14}
Square 2.
x=\frac{-2±\sqrt{4-56\left(-3\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-2±\sqrt{4+168}}{2\times 14}
Multiply -56 times -3.
x=\frac{-2±\sqrt{172}}{2\times 14}
Add 4 to 168.
x=\frac{-2±2\sqrt{43}}{2\times 14}
Take the square root of 172.
x=\frac{-2±2\sqrt{43}}{28}
Multiply 2 times 14.
x=\frac{2\sqrt{43}-2}{28}
Now solve the equation x=\frac{-2±2\sqrt{43}}{28} when ± is plus. Add -2 to 2\sqrt{43}.
x=\frac{\sqrt{43}-1}{14}
Divide -2+2\sqrt{43} by 28.
x=\frac{-2\sqrt{43}-2}{28}
Now solve the equation x=\frac{-2±2\sqrt{43}}{28} when ± is minus. Subtract 2\sqrt{43} from -2.
x=\frac{-\sqrt{43}-1}{14}
Divide -2-2\sqrt{43} by 28.
x=\frac{\sqrt{43}-1}{14} x=\frac{-\sqrt{43}-1}{14}
The equation is now solved.
14x^{2}+2x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{14x^{2}+2x}{14}=\frac{3}{14}
Divide both sides by 14.
x^{2}+\frac{2}{14}x=\frac{3}{14}
Dividing by 14 undoes the multiplication by 14.
x^{2}+\frac{1}{7}x=\frac{3}{14}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{7}x+\left(\frac{1}{14}\right)^{2}=\frac{3}{14}+\left(\frac{1}{14}\right)^{2}
Divide \frac{1}{7}, the coefficient of the x term, by 2 to get \frac{1}{14}. Then add the square of \frac{1}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{3}{14}+\frac{1}{196}
Square \frac{1}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{43}{196}
Add \frac{3}{14} to \frac{1}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{14}\right)^{2}=\frac{43}{196}
Factor x^{2}+\frac{1}{7}x+\frac{1}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{14}\right)^{2}}=\sqrt{\frac{43}{196}}
Take the square root of both sides of the equation.
x+\frac{1}{14}=\frac{\sqrt{43}}{14} x+\frac{1}{14}=-\frac{\sqrt{43}}{14}
Simplify.
x=\frac{\sqrt{43}-1}{14} x=\frac{-\sqrt{43}-1}{14}
Subtract \frac{1}{14} from both sides of the equation.