14 x + 10,5 = x ^ { 2 } + 1,5 x
Solve for x
x = \frac{\sqrt{793} + 25}{4} \approx 13.29006392
x=\frac{25-\sqrt{793}}{4}\approx -0.79006392
Graph
Share
Copied to clipboard
14x+10,5-x^{2}=1,5x
Subtract x^{2} from both sides.
14x+10,5-x^{2}-1,5x=0
Subtract 1,5x from both sides.
12,5x+10,5-x^{2}=0
Combine 14x and -1,5x to get 12,5x.
-x^{2}+12,5x+10,5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12,5±\sqrt{12,5^{2}-4\left(-1\right)\times 10,5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 12,5 for b, and 10,5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12,5±\sqrt{156,25-4\left(-1\right)\times 10,5}}{2\left(-1\right)}
Square 12,5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-12,5±\sqrt{156,25+4\times 10,5}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-12,5±\sqrt{156,25+42}}{2\left(-1\right)}
Multiply 4 times 10,5.
x=\frac{-12,5±\sqrt{198,25}}{2\left(-1\right)}
Add 156,25 to 42.
x=\frac{-12,5±\frac{\sqrt{793}}{2}}{2\left(-1\right)}
Take the square root of 198,25.
x=\frac{-12,5±\frac{\sqrt{793}}{2}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{793}-25}{-2\times 2}
Now solve the equation x=\frac{-12,5±\frac{\sqrt{793}}{2}}{-2} when ± is plus. Add -12,5 to \frac{\sqrt{793}}{2}.
x=\frac{25-\sqrt{793}}{4}
Divide \frac{-25+\sqrt{793}}{2} by -2.
x=\frac{-\sqrt{793}-25}{-2\times 2}
Now solve the equation x=\frac{-12,5±\frac{\sqrt{793}}{2}}{-2} when ± is minus. Subtract \frac{\sqrt{793}}{2} from -12,5.
x=\frac{\sqrt{793}+25}{4}
Divide \frac{-25-\sqrt{793}}{2} by -2.
x=\frac{25-\sqrt{793}}{4} x=\frac{\sqrt{793}+25}{4}
The equation is now solved.
14x+10,5-x^{2}=1,5x
Subtract x^{2} from both sides.
14x+10,5-x^{2}-1,5x=0
Subtract 1,5x from both sides.
12,5x+10,5-x^{2}=0
Combine 14x and -1,5x to get 12,5x.
12,5x-x^{2}=-10,5
Subtract 10,5 from both sides. Anything subtracted from zero gives its negation.
-x^{2}+12,5x=-10,5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+12,5x}{-1}=-\frac{10,5}{-1}
Divide both sides by -1.
x^{2}+\frac{12,5}{-1}x=-\frac{10,5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-12,5x=-\frac{10,5}{-1}
Divide 12,5 by -1.
x^{2}-12,5x=10,5
Divide -10,5 by -1.
x^{2}-12,5x+\left(-6,25\right)^{2}=10,5+\left(-6,25\right)^{2}
Divide -12,5, the coefficient of the x term, by 2 to get -6,25. Then add the square of -6,25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12,5x+39,0625=10,5+39,0625
Square -6,25 by squaring both the numerator and the denominator of the fraction.
x^{2}-12,5x+39,0625=49,5625
Add 10,5 to 39,0625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-6,25\right)^{2}=49,5625
Factor x^{2}-12,5x+39,0625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6,25\right)^{2}}=\sqrt{49,5625}
Take the square root of both sides of the equation.
x-6,25=\frac{\sqrt{793}}{4} x-6,25=-\frac{\sqrt{793}}{4}
Simplify.
x=\frac{\sqrt{793}+25}{4} x=\frac{25-\sqrt{793}}{4}
Add 6,25 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}