Solve for x
x=-\frac{7}{360}\approx -0.019444444
Graph
Share
Copied to clipboard
14x+\frac{1}{5}-\frac{2}{3}=38x
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
14x+\frac{3}{15}-\frac{10}{15}=38x
Least common multiple of 5 and 3 is 15. Convert \frac{1}{5} and \frac{2}{3} to fractions with denominator 15.
14x+\frac{3-10}{15}=38x
Since \frac{3}{15} and \frac{10}{15} have the same denominator, subtract them by subtracting their numerators.
14x-\frac{7}{15}=38x
Subtract 10 from 3 to get -7.
14x-\frac{7}{15}-38x=0
Subtract 38x from both sides.
-24x-\frac{7}{15}=0
Combine 14x and -38x to get -24x.
-24x=\frac{7}{15}
Add \frac{7}{15} to both sides. Anything plus zero gives itself.
x=\frac{\frac{7}{15}}{-24}
Divide both sides by -24.
x=\frac{7}{15\left(-24\right)}
Express \frac{\frac{7}{15}}{-24} as a single fraction.
x=\frac{7}{-360}
Multiply 15 and -24 to get -360.
x=-\frac{7}{360}
Fraction \frac{7}{-360} can be rewritten as -\frac{7}{360} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}