Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

q\left(14-q\right)
Factor out q.
-q^{2}+14q=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
q=\frac{-14±\sqrt{14^{2}}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-14±14}{2\left(-1\right)}
Take the square root of 14^{2}.
q=\frac{-14±14}{-2}
Multiply 2 times -1.
q=\frac{0}{-2}
Now solve the equation q=\frac{-14±14}{-2} when ± is plus. Add -14 to 14.
q=0
Divide 0 by -2.
q=-\frac{28}{-2}
Now solve the equation q=\frac{-14±14}{-2} when ± is minus. Subtract 14 from -14.
q=14
Divide -28 by -2.
-q^{2}+14q=-q\left(q-14\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 14 for x_{2}.