Solve for c
c=\sqrt{19}-2\approx 2.358898944
c=-\sqrt{19}-2\approx -6.358898944
Share
Copied to clipboard
14c^{2}+56c=210
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
14c^{2}+56c-210=210-210
Subtract 210 from both sides of the equation.
14c^{2}+56c-210=0
Subtracting 210 from itself leaves 0.
c=\frac{-56±\sqrt{56^{2}-4\times 14\left(-210\right)}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, 56 for b, and -210 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-56±\sqrt{3136-4\times 14\left(-210\right)}}{2\times 14}
Square 56.
c=\frac{-56±\sqrt{3136-56\left(-210\right)}}{2\times 14}
Multiply -4 times 14.
c=\frac{-56±\sqrt{3136+11760}}{2\times 14}
Multiply -56 times -210.
c=\frac{-56±\sqrt{14896}}{2\times 14}
Add 3136 to 11760.
c=\frac{-56±28\sqrt{19}}{2\times 14}
Take the square root of 14896.
c=\frac{-56±28\sqrt{19}}{28}
Multiply 2 times 14.
c=\frac{28\sqrt{19}-56}{28}
Now solve the equation c=\frac{-56±28\sqrt{19}}{28} when ± is plus. Add -56 to 28\sqrt{19}.
c=\sqrt{19}-2
Divide -56+28\sqrt{19} by 28.
c=\frac{-28\sqrt{19}-56}{28}
Now solve the equation c=\frac{-56±28\sqrt{19}}{28} when ± is minus. Subtract 28\sqrt{19} from -56.
c=-\sqrt{19}-2
Divide -56-28\sqrt{19} by 28.
c=\sqrt{19}-2 c=-\sqrt{19}-2
The equation is now solved.
14c^{2}+56c=210
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{14c^{2}+56c}{14}=\frac{210}{14}
Divide both sides by 14.
c^{2}+\frac{56}{14}c=\frac{210}{14}
Dividing by 14 undoes the multiplication by 14.
c^{2}+4c=\frac{210}{14}
Divide 56 by 14.
c^{2}+4c=15
Divide 210 by 14.
c^{2}+4c+2^{2}=15+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+4c+4=15+4
Square 2.
c^{2}+4c+4=19
Add 15 to 4.
\left(c+2\right)^{2}=19
Factor c^{2}+4c+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+2\right)^{2}}=\sqrt{19}
Take the square root of both sides of the equation.
c+2=\sqrt{19} c+2=-\sqrt{19}
Simplify.
c=\sqrt{19}-2 c=-\sqrt{19}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}