Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

b\left(14-9b\right)
Factor out b.
-9b^{2}+14b=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-14±\sqrt{14^{2}}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-14±14}{2\left(-9\right)}
Take the square root of 14^{2}.
b=\frac{-14±14}{-18}
Multiply 2 times -9.
b=\frac{0}{-18}
Now solve the equation b=\frac{-14±14}{-18} when ± is plus. Add -14 to 14.
b=0
Divide 0 by -18.
b=-\frac{28}{-18}
Now solve the equation b=\frac{-14±14}{-18} when ± is minus. Subtract 14 from -14.
b=\frac{14}{9}
Reduce the fraction \frac{-28}{-18} to lowest terms by extracting and canceling out 2.
-9b^{2}+14b=-9b\left(b-\frac{14}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{14}{9} for x_{2}.
-9b^{2}+14b=-9b\times \frac{-9b+14}{-9}
Subtract \frac{14}{9} from b by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-9b^{2}+14b=b\left(-9b+14\right)
Cancel out 9, the greatest common factor in -9 and -9.