Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

14a^{2}-56a+37=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 14\times 37}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, -56 for b, and 37 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-56\right)±\sqrt{3136-4\times 14\times 37}}{2\times 14}
Square -56.
a=\frac{-\left(-56\right)±\sqrt{3136-56\times 37}}{2\times 14}
Multiply -4 times 14.
a=\frac{-\left(-56\right)±\sqrt{3136-2072}}{2\times 14}
Multiply -56 times 37.
a=\frac{-\left(-56\right)±\sqrt{1064}}{2\times 14}
Add 3136 to -2072.
a=\frac{-\left(-56\right)±2\sqrt{266}}{2\times 14}
Take the square root of 1064.
a=\frac{56±2\sqrt{266}}{2\times 14}
The opposite of -56 is 56.
a=\frac{56±2\sqrt{266}}{28}
Multiply 2 times 14.
a=\frac{2\sqrt{266}+56}{28}
Now solve the equation a=\frac{56±2\sqrt{266}}{28} when ± is plus. Add 56 to 2\sqrt{266}.
a=\frac{\sqrt{266}}{14}+2
Divide 56+2\sqrt{266} by 28.
a=\frac{56-2\sqrt{266}}{28}
Now solve the equation a=\frac{56±2\sqrt{266}}{28} when ± is minus. Subtract 2\sqrt{266} from 56.
a=-\frac{\sqrt{266}}{14}+2
Divide 56-2\sqrt{266} by 28.
a=\frac{\sqrt{266}}{14}+2 a=-\frac{\sqrt{266}}{14}+2
The equation is now solved.
14a^{2}-56a+37=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
14a^{2}-56a+37-37=-37
Subtract 37 from both sides of the equation.
14a^{2}-56a=-37
Subtracting 37 from itself leaves 0.
\frac{14a^{2}-56a}{14}=-\frac{37}{14}
Divide both sides by 14.
a^{2}+\left(-\frac{56}{14}\right)a=-\frac{37}{14}
Dividing by 14 undoes the multiplication by 14.
a^{2}-4a=-\frac{37}{14}
Divide -56 by 14.
a^{2}-4a+\left(-2\right)^{2}=-\frac{37}{14}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=-\frac{37}{14}+4
Square -2.
a^{2}-4a+4=\frac{19}{14}
Add -\frac{37}{14} to 4.
\left(a-2\right)^{2}=\frac{19}{14}
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{\frac{19}{14}}
Take the square root of both sides of the equation.
a-2=\frac{\sqrt{266}}{14} a-2=-\frac{\sqrt{266}}{14}
Simplify.
a=\frac{\sqrt{266}}{14}+2 a=-\frac{\sqrt{266}}{14}+2
Add 2 to both sides of the equation.
x ^ 2 -4x +\frac{37}{14} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 14
r + s = 4 rs = \frac{37}{14}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 2 - u s = 2 + u
Two numbers r and s sum up to 4 exactly when the average of the two numbers is \frac{1}{2}*4 = 2. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(2 - u) (2 + u) = \frac{37}{14}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{37}{14}
4 - u^2 = \frac{37}{14}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{37}{14}-4 = -\frac{19}{14}
Simplify the expression by subtracting 4 on both sides
u^2 = \frac{19}{14} u = \pm\sqrt{\frac{19}{14}} = \pm \frac{\sqrt{19}}{\sqrt{14}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =2 - \frac{\sqrt{19}}{\sqrt{14}} = 0.835 s = 2 + \frac{\sqrt{19}}{\sqrt{14}} = 3.165
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.