Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

14-9a^{2}+4a^{2}=-16
Add 4a^{2} to both sides.
14-5a^{2}=-16
Combine -9a^{2} and 4a^{2} to get -5a^{2}.
-5a^{2}=-16-14
Subtract 14 from both sides.
-5a^{2}=-30
Subtract 14 from -16 to get -30.
a^{2}=\frac{-30}{-5}
Divide both sides by -5.
a^{2}=6
Divide -30 by -5 to get 6.
a=\sqrt{6} a=-\sqrt{6}
Take the square root of both sides of the equation.
14-9a^{2}-\left(-16\right)=-4a^{2}
Subtract -16 from both sides.
14-9a^{2}+16=-4a^{2}
The opposite of -16 is 16.
14-9a^{2}+16+4a^{2}=0
Add 4a^{2} to both sides.
30-9a^{2}+4a^{2}=0
Add 14 and 16 to get 30.
30-5a^{2}=0
Combine -9a^{2} and 4a^{2} to get -5a^{2}.
-5a^{2}+30=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-5\right)\times 30}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 0 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-5\right)\times 30}}{2\left(-5\right)}
Square 0.
a=\frac{0±\sqrt{20\times 30}}{2\left(-5\right)}
Multiply -4 times -5.
a=\frac{0±\sqrt{600}}{2\left(-5\right)}
Multiply 20 times 30.
a=\frac{0±10\sqrt{6}}{2\left(-5\right)}
Take the square root of 600.
a=\frac{0±10\sqrt{6}}{-10}
Multiply 2 times -5.
a=-\sqrt{6}
Now solve the equation a=\frac{0±10\sqrt{6}}{-10} when ± is plus.
a=\sqrt{6}
Now solve the equation a=\frac{0±10\sqrt{6}}{-10} when ± is minus.
a=-\sqrt{6} a=\sqrt{6}
The equation is now solved.