Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

14-3x^{2}=-x+4
Multiply x and x to get x^{2}.
14-3x^{2}+x=4
Add x to both sides.
14-3x^{2}+x-4=0
Subtract 4 from both sides.
10-3x^{2}+x=0
Subtract 4 from 14 to get 10.
-3x^{2}+x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-3\right)\times 10}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 1 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-3\right)\times 10}}{2\left(-3\right)}
Square 1.
x=\frac{-1±\sqrt{1+12\times 10}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-1±\sqrt{1+120}}{2\left(-3\right)}
Multiply 12 times 10.
x=\frac{-1±\sqrt{121}}{2\left(-3\right)}
Add 1 to 120.
x=\frac{-1±11}{2\left(-3\right)}
Take the square root of 121.
x=\frac{-1±11}{-6}
Multiply 2 times -3.
x=\frac{10}{-6}
Now solve the equation x=\frac{-1±11}{-6} when ± is plus. Add -1 to 11.
x=-\frac{5}{3}
Reduce the fraction \frac{10}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{12}{-6}
Now solve the equation x=\frac{-1±11}{-6} when ± is minus. Subtract 11 from -1.
x=2
Divide -12 by -6.
x=-\frac{5}{3} x=2
The equation is now solved.
14-3x^{2}=-x+4
Multiply x and x to get x^{2}.
14-3x^{2}+x=4
Add x to both sides.
-3x^{2}+x=4-14
Subtract 14 from both sides.
-3x^{2}+x=-10
Subtract 14 from 4 to get -10.
\frac{-3x^{2}+x}{-3}=-\frac{10}{-3}
Divide both sides by -3.
x^{2}+\frac{1}{-3}x=-\frac{10}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{1}{3}x=-\frac{10}{-3}
Divide 1 by -3.
x^{2}-\frac{1}{3}x=\frac{10}{3}
Divide -10 by -3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{10}{3}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{10}{3}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{121}{36}
Add \frac{10}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{121}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{11}{6} x-\frac{1}{6}=-\frac{11}{6}
Simplify.
x=2 x=-\frac{5}{3}
Add \frac{1}{6} to both sides of the equation.