Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

14-\left(10x^{2}+13x-3\right)=17-\left(10x+19\left(x-6\right)\right)
Use the distributive property to multiply 5x-1 by 2x+3 and combine like terms.
14-10x^{2}-13x+3=17-\left(10x+19\left(x-6\right)\right)
To find the opposite of 10x^{2}+13x-3, find the opposite of each term.
17-10x^{2}-13x=17-\left(10x+19\left(x-6\right)\right)
Add 14 and 3 to get 17.
17-10x^{2}-13x=17-\left(10x+19x-114\right)
Use the distributive property to multiply 19 by x-6.
17-10x^{2}-13x=17-\left(29x-114\right)
Combine 10x and 19x to get 29x.
17-10x^{2}-13x=17-29x+114
To find the opposite of 29x-114, find the opposite of each term.
17-10x^{2}-13x=131-29x
Add 17 and 114 to get 131.
17-10x^{2}-13x-131=-29x
Subtract 131 from both sides.
-114-10x^{2}-13x=-29x
Subtract 131 from 17 to get -114.
-114-10x^{2}-13x+29x=0
Add 29x to both sides.
-114-10x^{2}+16x=0
Combine -13x and 29x to get 16x.
-10x^{2}+16x-114=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-10\right)\left(-114\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 16 for b, and -114 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-10\right)\left(-114\right)}}{2\left(-10\right)}
Square 16.
x=\frac{-16±\sqrt{256+40\left(-114\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-16±\sqrt{256-4560}}{2\left(-10\right)}
Multiply 40 times -114.
x=\frac{-16±\sqrt{-4304}}{2\left(-10\right)}
Add 256 to -4560.
x=\frac{-16±4\sqrt{269}i}{2\left(-10\right)}
Take the square root of -4304.
x=\frac{-16±4\sqrt{269}i}{-20}
Multiply 2 times -10.
x=\frac{-16+4\sqrt{269}i}{-20}
Now solve the equation x=\frac{-16±4\sqrt{269}i}{-20} when ± is plus. Add -16 to 4i\sqrt{269}.
x=\frac{-\sqrt{269}i+4}{5}
Divide -16+4i\sqrt{269} by -20.
x=\frac{-4\sqrt{269}i-16}{-20}
Now solve the equation x=\frac{-16±4\sqrt{269}i}{-20} when ± is minus. Subtract 4i\sqrt{269} from -16.
x=\frac{4+\sqrt{269}i}{5}
Divide -16-4i\sqrt{269} by -20.
x=\frac{-\sqrt{269}i+4}{5} x=\frac{4+\sqrt{269}i}{5}
The equation is now solved.
14-\left(10x^{2}+13x-3\right)=17-\left(10x+19\left(x-6\right)\right)
Use the distributive property to multiply 5x-1 by 2x+3 and combine like terms.
14-10x^{2}-13x+3=17-\left(10x+19\left(x-6\right)\right)
To find the opposite of 10x^{2}+13x-3, find the opposite of each term.
17-10x^{2}-13x=17-\left(10x+19\left(x-6\right)\right)
Add 14 and 3 to get 17.
17-10x^{2}-13x=17-\left(10x+19x-114\right)
Use the distributive property to multiply 19 by x-6.
17-10x^{2}-13x=17-\left(29x-114\right)
Combine 10x and 19x to get 29x.
17-10x^{2}-13x=17-29x+114
To find the opposite of 29x-114, find the opposite of each term.
17-10x^{2}-13x=131-29x
Add 17 and 114 to get 131.
17-10x^{2}-13x+29x=131
Add 29x to both sides.
17-10x^{2}+16x=131
Combine -13x and 29x to get 16x.
-10x^{2}+16x=131-17
Subtract 17 from both sides.
-10x^{2}+16x=114
Subtract 17 from 131 to get 114.
\frac{-10x^{2}+16x}{-10}=\frac{114}{-10}
Divide both sides by -10.
x^{2}+\frac{16}{-10}x=\frac{114}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{8}{5}x=\frac{114}{-10}
Reduce the fraction \frac{16}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{8}{5}x=-\frac{57}{5}
Reduce the fraction \frac{114}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{57}{5}+\left(-\frac{4}{5}\right)^{2}
Divide -\frac{8}{5}, the coefficient of the x term, by 2 to get -\frac{4}{5}. Then add the square of -\frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{57}{5}+\frac{16}{25}
Square -\frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{269}{25}
Add -\frac{57}{5} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{5}\right)^{2}=-\frac{269}{25}
Factor x^{2}-\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{-\frac{269}{25}}
Take the square root of both sides of the equation.
x-\frac{4}{5}=\frac{\sqrt{269}i}{5} x-\frac{4}{5}=-\frac{\sqrt{269}i}{5}
Simplify.
x=\frac{4+\sqrt{269}i}{5} x=\frac{-\sqrt{269}i+4}{5}
Add \frac{4}{5} to both sides of the equation.