Solve for x
x = \frac{\sqrt{3761} + 25}{28} \approx 3.083106872
x=\frac{25-\sqrt{3761}}{28}\approx -1.297392587
Graph
Share
Copied to clipboard
14x^{2}-25x+69=125
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
14x^{2}-25x+69-125=125-125
Subtract 125 from both sides of the equation.
14x^{2}-25x+69-125=0
Subtracting 125 from itself leaves 0.
14x^{2}-25x-56=0
Subtract 125 from 69.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 14\left(-56\right)}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, -25 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 14\left(-56\right)}}{2\times 14}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-56\left(-56\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-\left(-25\right)±\sqrt{625+3136}}{2\times 14}
Multiply -56 times -56.
x=\frac{-\left(-25\right)±\sqrt{3761}}{2\times 14}
Add 625 to 3136.
x=\frac{25±\sqrt{3761}}{2\times 14}
The opposite of -25 is 25.
x=\frac{25±\sqrt{3761}}{28}
Multiply 2 times 14.
x=\frac{\sqrt{3761}+25}{28}
Now solve the equation x=\frac{25±\sqrt{3761}}{28} when ± is plus. Add 25 to \sqrt{3761}.
x=\frac{25-\sqrt{3761}}{28}
Now solve the equation x=\frac{25±\sqrt{3761}}{28} when ± is minus. Subtract \sqrt{3761} from 25.
x=\frac{\sqrt{3761}+25}{28} x=\frac{25-\sqrt{3761}}{28}
The equation is now solved.
14x^{2}-25x+69=125
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
14x^{2}-25x+69-69=125-69
Subtract 69 from both sides of the equation.
14x^{2}-25x=125-69
Subtracting 69 from itself leaves 0.
14x^{2}-25x=56
Subtract 69 from 125.
\frac{14x^{2}-25x}{14}=\frac{56}{14}
Divide both sides by 14.
x^{2}-\frac{25}{14}x=\frac{56}{14}
Dividing by 14 undoes the multiplication by 14.
x^{2}-\frac{25}{14}x=4
Divide 56 by 14.
x^{2}-\frac{25}{14}x+\left(-\frac{25}{28}\right)^{2}=4+\left(-\frac{25}{28}\right)^{2}
Divide -\frac{25}{14}, the coefficient of the x term, by 2 to get -\frac{25}{28}. Then add the square of -\frac{25}{28} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{14}x+\frac{625}{784}=4+\frac{625}{784}
Square -\frac{25}{28} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{14}x+\frac{625}{784}=\frac{3761}{784}
Add 4 to \frac{625}{784}.
\left(x-\frac{25}{28}\right)^{2}=\frac{3761}{784}
Factor x^{2}-\frac{25}{14}x+\frac{625}{784}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{28}\right)^{2}}=\sqrt{\frac{3761}{784}}
Take the square root of both sides of the equation.
x-\frac{25}{28}=\frac{\sqrt{3761}}{28} x-\frac{25}{28}=-\frac{\sqrt{3761}}{28}
Simplify.
x=\frac{\sqrt{3761}+25}{28} x=\frac{25-\sqrt{3761}}{28}
Add \frac{25}{28} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}