Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

14x^{2}-141x+90=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-141\right)±\sqrt{\left(-141\right)^{2}-4\times 14\times 90}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-141\right)±\sqrt{19881-4\times 14\times 90}}{2\times 14}
Square -141.
x=\frac{-\left(-141\right)±\sqrt{19881-56\times 90}}{2\times 14}
Multiply -4 times 14.
x=\frac{-\left(-141\right)±\sqrt{19881-5040}}{2\times 14}
Multiply -56 times 90.
x=\frac{-\left(-141\right)±\sqrt{14841}}{2\times 14}
Add 19881 to -5040.
x=\frac{-\left(-141\right)±3\sqrt{1649}}{2\times 14}
Take the square root of 14841.
x=\frac{141±3\sqrt{1649}}{2\times 14}
The opposite of -141 is 141.
x=\frac{141±3\sqrt{1649}}{28}
Multiply 2 times 14.
x=\frac{3\sqrt{1649}+141}{28}
Now solve the equation x=\frac{141±3\sqrt{1649}}{28} when ± is plus. Add 141 to 3\sqrt{1649}.
x=\frac{141-3\sqrt{1649}}{28}
Now solve the equation x=\frac{141±3\sqrt{1649}}{28} when ± is minus. Subtract 3\sqrt{1649} from 141.
14x^{2}-141x+90=14\left(x-\frac{3\sqrt{1649}+141}{28}\right)\left(x-\frac{141-3\sqrt{1649}}{28}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{141+3\sqrt{1649}}{28} for x_{1} and \frac{141-3\sqrt{1649}}{28} for x_{2}.