Solve for x
x=\frac{\sqrt{14365029}}{4357}\approx 0.869892715
x=-\frac{\sqrt{14365029}}{4357}\approx -0.869892715
Graph
Share
Copied to clipboard
14x^{2}\times 3+\left(\frac{1}{2}x\right)^{2}\times 3.14\times 2=32.97
Multiply x and x to get x^{2}.
42x^{2}+\left(\frac{1}{2}x\right)^{2}\times 3.14\times 2=32.97
Multiply 14 and 3 to get 42.
42x^{2}+\left(\frac{1}{2}\right)^{2}x^{2}\times 3.14\times 2=32.97
Expand \left(\frac{1}{2}x\right)^{2}.
42x^{2}+\frac{1}{4}x^{2}\times 3.14\times 2=32.97
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
42x^{2}+\frac{157}{200}x^{2}\times 2=32.97
Multiply \frac{1}{4} and 3.14 to get \frac{157}{200}.
42x^{2}+\frac{157}{100}x^{2}=32.97
Multiply \frac{157}{200} and 2 to get \frac{157}{100}.
\frac{4357}{100}x^{2}=32.97
Combine 42x^{2} and \frac{157}{100}x^{2} to get \frac{4357}{100}x^{2}.
x^{2}=32.97\times \frac{100}{4357}
Multiply both sides by \frac{100}{4357}, the reciprocal of \frac{4357}{100}.
x^{2}=\frac{3297}{4357}
Multiply 32.97 and \frac{100}{4357} to get \frac{3297}{4357}.
x=\frac{\sqrt{14365029}}{4357} x=-\frac{\sqrt{14365029}}{4357}
Take the square root of both sides of the equation.
14x^{2}\times 3+\left(\frac{1}{2}x\right)^{2}\times 3.14\times 2=32.97
Multiply x and x to get x^{2}.
42x^{2}+\left(\frac{1}{2}x\right)^{2}\times 3.14\times 2=32.97
Multiply 14 and 3 to get 42.
42x^{2}+\left(\frac{1}{2}\right)^{2}x^{2}\times 3.14\times 2=32.97
Expand \left(\frac{1}{2}x\right)^{2}.
42x^{2}+\frac{1}{4}x^{2}\times 3.14\times 2=32.97
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
42x^{2}+\frac{157}{200}x^{2}\times 2=32.97
Multiply \frac{1}{4} and 3.14 to get \frac{157}{200}.
42x^{2}+\frac{157}{100}x^{2}=32.97
Multiply \frac{157}{200} and 2 to get \frac{157}{100}.
\frac{4357}{100}x^{2}=32.97
Combine 42x^{2} and \frac{157}{100}x^{2} to get \frac{4357}{100}x^{2}.
\frac{4357}{100}x^{2}-32.97=0
Subtract 32.97 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{4357}{100}\left(-32.97\right)}}{2\times \frac{4357}{100}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4357}{100} for a, 0 for b, and -32.97 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{4357}{100}\left(-32.97\right)}}{2\times \frac{4357}{100}}
Square 0.
x=\frac{0±\sqrt{-\frac{4357}{25}\left(-32.97\right)}}{2\times \frac{4357}{100}}
Multiply -4 times \frac{4357}{100}.
x=\frac{0±\sqrt{\frac{14365029}{2500}}}{2\times \frac{4357}{100}}
Multiply -\frac{4357}{25} times -32.97 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{\sqrt{14365029}}{50}}{2\times \frac{4357}{100}}
Take the square root of \frac{14365029}{2500}.
x=\frac{0±\frac{\sqrt{14365029}}{50}}{\frac{4357}{50}}
Multiply 2 times \frac{4357}{100}.
x=\frac{\sqrt{14365029}}{4357}
Now solve the equation x=\frac{0±\frac{\sqrt{14365029}}{50}}{\frac{4357}{50}} when ± is plus.
x=-\frac{\sqrt{14365029}}{4357}
Now solve the equation x=\frac{0±\frac{\sqrt{14365029}}{50}}{\frac{4357}{50}} when ± is minus.
x=\frac{\sqrt{14365029}}{4357} x=-\frac{\sqrt{14365029}}{4357}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}