Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

14\times \frac{\sqrt{3}}{\sqrt{2}}-3\sqrt{\frac{1}{2}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
14\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\sqrt{\frac{1}{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
14\times \frac{\sqrt{3}\sqrt{2}}{2}-3\sqrt{\frac{1}{2}}
The square of \sqrt{2} is 2.
14\times \frac{\sqrt{6}}{2}-3\sqrt{\frac{1}{2}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
7\sqrt{6}-3\sqrt{\frac{1}{2}}
Cancel out 2, the greatest common factor in 14 and 2.
7\sqrt{6}-3\times \frac{\sqrt{1}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
7\sqrt{6}-3\times \frac{1}{\sqrt{2}}
Calculate the square root of 1 and get 1.
7\sqrt{6}-3\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
7\sqrt{6}-3\times \frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
7\sqrt{6}+\frac{-3\sqrt{2}}{2}
Express -3\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{2\times 7\sqrt{6}}{2}+\frac{-3\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7\sqrt{6} times \frac{2}{2}.
\frac{2\times 7\sqrt{6}-3\sqrt{2}}{2}
Since \frac{2\times 7\sqrt{6}}{2} and \frac{-3\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{14\sqrt{6}-3\sqrt{2}}{2}
Do the multiplications in 2\times 7\sqrt{6}-3\sqrt{2}.