Evaluate
\frac{403}{42}\approx 9.595238095
Factor
\frac{13 \cdot 31}{2 \cdot 3 \cdot 7} = 9\frac{25}{42} = 9.595238095238095
Share
Copied to clipboard
\frac{140+41}{10}\times \frac{5}{7}-\frac{3\times 3+1}{3}
Multiply 14 and 10 to get 140.
\frac{181}{10}\times \frac{5}{7}-\frac{3\times 3+1}{3}
Add 140 and 41 to get 181.
\frac{181\times 5}{10\times 7}-\frac{3\times 3+1}{3}
Multiply \frac{181}{10} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{905}{70}-\frac{3\times 3+1}{3}
Do the multiplications in the fraction \frac{181\times 5}{10\times 7}.
\frac{181}{14}-\frac{3\times 3+1}{3}
Reduce the fraction \frac{905}{70} to lowest terms by extracting and canceling out 5.
\frac{181}{14}-\frac{9+1}{3}
Multiply 3 and 3 to get 9.
\frac{181}{14}-\frac{10}{3}
Add 9 and 1 to get 10.
\frac{543}{42}-\frac{140}{42}
Least common multiple of 14 and 3 is 42. Convert \frac{181}{14} and \frac{10}{3} to fractions with denominator 42.
\frac{543-140}{42}
Since \frac{543}{42} and \frac{140}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{403}{42}
Subtract 140 from 543 to get 403.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}