Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

14\times \frac{2x+1}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}}+7
Use the distributive property to multiply \left(x-1\right)^{2} by x^{2}+1.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}}+7
Express 14\times \frac{2x+1}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}} as a single fraction.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}+7
Factor \left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}+\frac{7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}.
\frac{14\left(2x+1\right)+7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Since \frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)} and \frac{7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{28x+14+7x^{4}+7x^{2}-14x^{3}-14x+7x^{2}+7}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Do the multiplications in 14\left(2x+1\right)+7\left(x-1\right)^{2}\left(x^{2}+1\right).
\frac{14x+21+7x^{4}+14x^{2}-14x^{3}}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Combine like terms in 28x+14+7x^{4}+7x^{2}-14x^{3}-14x+7x^{2}+7.
\frac{14x+21+7x^{4}+14x^{2}-14x^{3}}{x^{4}-2x^{3}+2x^{2}-2x+1}
Expand \left(x-1\right)^{2}\left(x^{2}+1\right).
14\times \frac{2x+1}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}}+7
Use the distributive property to multiply \left(x-1\right)^{2} by x^{2}+1.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}}+7
Express 14\times \frac{2x+1}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}} as a single fraction.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}+7
Factor \left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}+\frac{7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}.
\frac{14\left(2x+1\right)+7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Since \frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)} and \frac{7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{28x+14+7x^{4}+7x^{2}-14x^{3}-14x+7x^{2}+7}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Do the multiplications in 14\left(2x+1\right)+7\left(x-1\right)^{2}\left(x^{2}+1\right).
\frac{14x+21+7x^{4}+14x^{2}-14x^{3}}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Combine like terms in 28x+14+7x^{4}+7x^{2}-14x^{3}-14x+7x^{2}+7.
\frac{14x+21+7x^{4}+14x^{2}-14x^{3}}{x^{4}-2x^{3}+2x^{2}-2x+1}
Expand \left(x-1\right)^{2}\left(x^{2}+1\right).