Evaluate
\frac{7\left(x^{4}-2x^{3}+2x^{2}+2x+3\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Expand
\frac{7\left(x^{4}-2x^{3}+2x^{2}+2x+3\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Graph
Quiz
Polynomial
5 problems similar to:
14 \frac { 2 x + 1 } { ( x - 1 ) ^ { 2 } ( x ^ { 2 } + 1 ) } + 7
Share
Copied to clipboard
14\times \frac{2x+1}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}}+7
Use the distributive property to multiply \left(x-1\right)^{2} by x^{2}+1.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}}+7
Express 14\times \frac{2x+1}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}} as a single fraction.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}+7
Factor \left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}+\frac{7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}.
\frac{14\left(2x+1\right)+7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Since \frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)} and \frac{7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{28x+14+7x^{4}+7x^{2}-14x^{3}-14x+7x^{2}+7}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Do the multiplications in 14\left(2x+1\right)+7\left(x-1\right)^{2}\left(x^{2}+1\right).
\frac{14x+21+7x^{4}+14x^{2}-14x^{3}}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Combine like terms in 28x+14+7x^{4}+7x^{2}-14x^{3}-14x+7x^{2}+7.
\frac{14x+21+7x^{4}+14x^{2}-14x^{3}}{x^{4}-2x^{3}+2x^{2}-2x+1}
Expand \left(x-1\right)^{2}\left(x^{2}+1\right).
14\times \frac{2x+1}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}}+7
Use the distributive property to multiply \left(x-1\right)^{2} by x^{2}+1.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}}+7
Express 14\times \frac{2x+1}{\left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}} as a single fraction.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}+7
Factor \left(x-1\right)^{2}x^{2}+\left(x-1\right)^{2}.
\frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}+\frac{7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}.
\frac{14\left(2x+1\right)+7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Since \frac{14\left(2x+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)} and \frac{7\left(x-1\right)^{2}\left(x^{2}+1\right)}{\left(x-1\right)^{2}\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{28x+14+7x^{4}+7x^{2}-14x^{3}-14x+7x^{2}+7}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Do the multiplications in 14\left(2x+1\right)+7\left(x-1\right)^{2}\left(x^{2}+1\right).
\frac{14x+21+7x^{4}+14x^{2}-14x^{3}}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Combine like terms in 28x+14+7x^{4}+7x^{2}-14x^{3}-14x+7x^{2}+7.
\frac{14x+21+7x^{4}+14x^{2}-14x^{3}}{x^{4}-2x^{3}+2x^{2}-2x+1}
Expand \left(x-1\right)^{2}\left(x^{2}+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}