Solve for y
y = \frac{42}{5} = 8\frac{2}{5} = 8.4
Graph
Share
Copied to clipboard
196-y^{2}=13^{2}-\left(15-y\right)^{2}
Calculate 14 to the power of 2 and get 196.
196-y^{2}=169-\left(15-y\right)^{2}
Calculate 13 to the power of 2 and get 169.
196-y^{2}=169-\left(225-30y+y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(15-y\right)^{2}.
196-y^{2}=169-225+30y-y^{2}
To find the opposite of 225-30y+y^{2}, find the opposite of each term.
196-y^{2}=-56+30y-y^{2}
Subtract 225 from 169 to get -56.
196-y^{2}-30y=-56-y^{2}
Subtract 30y from both sides.
196-y^{2}-30y+y^{2}=-56
Add y^{2} to both sides.
196-30y=-56
Combine -y^{2} and y^{2} to get 0.
-30y=-56-196
Subtract 196 from both sides.
-30y=-252
Subtract 196 from -56 to get -252.
y=\frac{-252}{-30}
Divide both sides by -30.
y=\frac{42}{5}
Reduce the fraction \frac{-252}{-30} to lowest terms by extracting and canceling out -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}