Evaluate
\frac{1}{14}\approx 0.071428571
Factor
\frac{1}{2 \cdot 7} = 0.07142857142857142
Share
Copied to clipboard
14^{-5}\times 14^{6}\times 14^{-2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
14^{1}\times 14^{-2}
To multiply powers of the same base, add their exponents. Add -5 and 6 to get 1.
14^{-1}
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
\frac{1}{14}
Calculate 14 to the power of -1 and get \frac{1}{14}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}