Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-10x^{2}+25x+6=14
Swap sides so that all variable terms are on the left hand side.
-10x^{2}+25x+6-14=0
Subtract 14 from both sides.
-10x^{2}+25x-8=0
Subtract 14 from 6 to get -8.
x=\frac{-25±\sqrt{25^{2}-4\left(-10\right)\left(-8\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 25 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-10\right)\left(-8\right)}}{2\left(-10\right)}
Square 25.
x=\frac{-25±\sqrt{625+40\left(-8\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-25±\sqrt{625-320}}{2\left(-10\right)}
Multiply 40 times -8.
x=\frac{-25±\sqrt{305}}{2\left(-10\right)}
Add 625 to -320.
x=\frac{-25±\sqrt{305}}{-20}
Multiply 2 times -10.
x=\frac{\sqrt{305}-25}{-20}
Now solve the equation x=\frac{-25±\sqrt{305}}{-20} when ± is plus. Add -25 to \sqrt{305}.
x=-\frac{\sqrt{305}}{20}+\frac{5}{4}
Divide -25+\sqrt{305} by -20.
x=\frac{-\sqrt{305}-25}{-20}
Now solve the equation x=\frac{-25±\sqrt{305}}{-20} when ± is minus. Subtract \sqrt{305} from -25.
x=\frac{\sqrt{305}}{20}+\frac{5}{4}
Divide -25-\sqrt{305} by -20.
x=-\frac{\sqrt{305}}{20}+\frac{5}{4} x=\frac{\sqrt{305}}{20}+\frac{5}{4}
The equation is now solved.
-10x^{2}+25x+6=14
Swap sides so that all variable terms are on the left hand side.
-10x^{2}+25x=14-6
Subtract 6 from both sides.
-10x^{2}+25x=8
Subtract 6 from 14 to get 8.
\frac{-10x^{2}+25x}{-10}=\frac{8}{-10}
Divide both sides by -10.
x^{2}+\frac{25}{-10}x=\frac{8}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{5}{2}x=\frac{8}{-10}
Reduce the fraction \frac{25}{-10} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{5}{2}x=-\frac{4}{5}
Reduce the fraction \frac{8}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{4}{5}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{4}{5}+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{61}{80}
Add -\frac{4}{5} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{4}\right)^{2}=\frac{61}{80}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{61}{80}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{\sqrt{305}}{20} x-\frac{5}{4}=-\frac{\sqrt{305}}{20}
Simplify.
x=\frac{\sqrt{305}}{20}+\frac{5}{4} x=-\frac{\sqrt{305}}{20}+\frac{5}{4}
Add \frac{5}{4} to both sides of the equation.