Solve for x
x = \frac{36 {(\sqrt{2} + 25)}}{623} \approx 1.526342999
Graph
Share
Copied to clipboard
13x+12x-30=\sqrt{2}x+6
Use the distributive property to multiply 6 by 2x-5.
25x-30=\sqrt{2}x+6
Combine 13x and 12x to get 25x.
25x-30-\sqrt{2}x=6
Subtract \sqrt{2}x from both sides.
25x-\sqrt{2}x=6+30
Add 30 to both sides.
25x-\sqrt{2}x=36
Add 6 and 30 to get 36.
\left(25-\sqrt{2}\right)x=36
Combine all terms containing x.
\frac{\left(25-\sqrt{2}\right)x}{25-\sqrt{2}}=\frac{36}{25-\sqrt{2}}
Divide both sides by 25-\sqrt{2}.
x=\frac{36}{25-\sqrt{2}}
Dividing by 25-\sqrt{2} undoes the multiplication by 25-\sqrt{2}.
x=\frac{36\sqrt{2}+900}{623}
Divide 36 by 25-\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}