Evaluate
\frac{139}{81}\approx 1.716049383
Factor
\frac{139}{3 ^ {4}} = 1\frac{58}{81} = 1.7160493827160495
Share
Copied to clipboard
\begin{array}{l}\phantom{81)}\phantom{1}\\81\overline{)139}\\\end{array}
Use the 1^{st} digit 1 from dividend 139
\begin{array}{l}\phantom{81)}0\phantom{2}\\81\overline{)139}\\\end{array}
Since 1 is less than 81, use the next digit 3 from dividend 139 and add 0 to the quotient
\begin{array}{l}\phantom{81)}0\phantom{3}\\81\overline{)139}\\\end{array}
Use the 2^{nd} digit 3 from dividend 139
\begin{array}{l}\phantom{81)}00\phantom{4}\\81\overline{)139}\\\end{array}
Since 13 is less than 81, use the next digit 9 from dividend 139 and add 0 to the quotient
\begin{array}{l}\phantom{81)}00\phantom{5}\\81\overline{)139}\\\end{array}
Use the 3^{rd} digit 9 from dividend 139
\begin{array}{l}\phantom{81)}001\phantom{6}\\81\overline{)139}\\\phantom{81)}\underline{\phantom{9}81\phantom{}}\\\phantom{81)9}58\\\end{array}
Find closest multiple of 81 to 139. We see that 1 \times 81 = 81 is the nearest. Now subtract 81 from 139 to get reminder 58. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }58
Since 58 is less than 81, stop the division. The reminder is 58. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}