Evaluate
\frac{69}{35}\approx 1.971428571
Factor
\frac{3 \cdot 23}{5 \cdot 7} = 1\frac{34}{35} = 1.9714285714285715
Share
Copied to clipboard
\begin{array}{l}\phantom{70)}\phantom{1}\\70\overline{)138}\\\end{array}
Use the 1^{st} digit 1 from dividend 138
\begin{array}{l}\phantom{70)}0\phantom{2}\\70\overline{)138}\\\end{array}
Since 1 is less than 70, use the next digit 3 from dividend 138 and add 0 to the quotient
\begin{array}{l}\phantom{70)}0\phantom{3}\\70\overline{)138}\\\end{array}
Use the 2^{nd} digit 3 from dividend 138
\begin{array}{l}\phantom{70)}00\phantom{4}\\70\overline{)138}\\\end{array}
Since 13 is less than 70, use the next digit 8 from dividend 138 and add 0 to the quotient
\begin{array}{l}\phantom{70)}00\phantom{5}\\70\overline{)138}\\\end{array}
Use the 3^{rd} digit 8 from dividend 138
\begin{array}{l}\phantom{70)}001\phantom{6}\\70\overline{)138}\\\phantom{70)}\underline{\phantom{9}70\phantom{}}\\\phantom{70)9}68\\\end{array}
Find closest multiple of 70 to 138. We see that 1 \times 70 = 70 is the nearest. Now subtract 70 from 138 to get reminder 68. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }68
Since 68 is less than 70, stop the division. The reminder is 68. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}