Evaluate
\frac{138}{17}\approx 8.117647059
Factor
\frac{2 \cdot 3 \cdot 23}{17} = 8\frac{2}{17} = 8.117647058823529
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)138}\\\end{array}
Use the 1^{st} digit 1 from dividend 138
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)138}\\\end{array}
Since 1 is less than 17, use the next digit 3 from dividend 138 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)138}\\\end{array}
Use the 2^{nd} digit 3 from dividend 138
\begin{array}{l}\phantom{17)}00\phantom{4}\\17\overline{)138}\\\end{array}
Since 13 is less than 17, use the next digit 8 from dividend 138 and add 0 to the quotient
\begin{array}{l}\phantom{17)}00\phantom{5}\\17\overline{)138}\\\end{array}
Use the 3^{rd} digit 8 from dividend 138
\begin{array}{l}\phantom{17)}008\phantom{6}\\17\overline{)138}\\\phantom{17)}\underline{\phantom{}136\phantom{}}\\\phantom{17)99}2\\\end{array}
Find closest multiple of 17 to 138. We see that 8 \times 17 = 136 is the nearest. Now subtract 136 from 138 to get reminder 2. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }2
Since 2 is less than 17, stop the division. The reminder is 2. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}