Evaluate
\frac{1373}{225}\approx 6.102222222
Factor
\frac{1373}{3 ^ {2} \cdot 5 ^ {2}} = 6\frac{23}{225} = 6.102222222222222
Share
Copied to clipboard
\begin{array}{l}\phantom{225)}\phantom{1}\\225\overline{)1373}\\\end{array}
Use the 1^{st} digit 1 from dividend 1373
\begin{array}{l}\phantom{225)}0\phantom{2}\\225\overline{)1373}\\\end{array}
Since 1 is less than 225, use the next digit 3 from dividend 1373 and add 0 to the quotient
\begin{array}{l}\phantom{225)}0\phantom{3}\\225\overline{)1373}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1373
\begin{array}{l}\phantom{225)}00\phantom{4}\\225\overline{)1373}\\\end{array}
Since 13 is less than 225, use the next digit 7 from dividend 1373 and add 0 to the quotient
\begin{array}{l}\phantom{225)}00\phantom{5}\\225\overline{)1373}\\\end{array}
Use the 3^{rd} digit 7 from dividend 1373
\begin{array}{l}\phantom{225)}000\phantom{6}\\225\overline{)1373}\\\end{array}
Since 137 is less than 225, use the next digit 3 from dividend 1373 and add 0 to the quotient
\begin{array}{l}\phantom{225)}000\phantom{7}\\225\overline{)1373}\\\end{array}
Use the 4^{th} digit 3 from dividend 1373
\begin{array}{l}\phantom{225)}0006\phantom{8}\\225\overline{)1373}\\\phantom{225)}\underline{\phantom{}1350\phantom{}}\\\phantom{225)99}23\\\end{array}
Find closest multiple of 225 to 1373. We see that 6 \times 225 = 1350 is the nearest. Now subtract 1350 from 1373 to get reminder 23. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }23
Since 23 is less than 225, stop the division. The reminder is 23. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}