135x \% \times 90 \% -5-x=208
Solve for x
x = \frac{42600}{43} = 990\frac{30}{43} \approx 990.697674419
Graph
Share
Copied to clipboard
135x\times \frac{90}{100}-500-100x=20800
Multiply both sides of the equation by 100.
135x\times \frac{9}{10}-500-100x=20800
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
\frac{135\times 9}{10}x-500-100x=20800
Express 135\times \frac{9}{10} as a single fraction.
\frac{1215}{10}x-500-100x=20800
Multiply 135 and 9 to get 1215.
\frac{243}{2}x-500-100x=20800
Reduce the fraction \frac{1215}{10} to lowest terms by extracting and canceling out 5.
\frac{43}{2}x-500=20800
Combine \frac{243}{2}x and -100x to get \frac{43}{2}x.
\frac{43}{2}x=20800+500
Add 500 to both sides.
\frac{43}{2}x=21300
Add 20800 and 500 to get 21300.
x=21300\times \frac{2}{43}
Multiply both sides by \frac{2}{43}, the reciprocal of \frac{43}{2}.
x=\frac{21300\times 2}{43}
Express 21300\times \frac{2}{43} as a single fraction.
x=\frac{42600}{43}
Multiply 21300 and 2 to get 42600.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}