Evaluate
\frac{1696}{3}\approx 565.333333333
Factor
\frac{2 ^ {5} \cdot 53}{3} = 565\frac{1}{3} = 565.3333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)13568}\\\end{array}
Use the 1^{st} digit 1 from dividend 13568
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)13568}\\\end{array}
Since 1 is less than 24, use the next digit 3 from dividend 13568 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)13568}\\\end{array}
Use the 2^{nd} digit 3 from dividend 13568
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)13568}\\\end{array}
Since 13 is less than 24, use the next digit 5 from dividend 13568 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)13568}\\\end{array}
Use the 3^{rd} digit 5 from dividend 13568
\begin{array}{l}\phantom{24)}005\phantom{6}\\24\overline{)13568}\\\phantom{24)}\underline{\phantom{}120\phantom{99}}\\\phantom{24)9}15\\\end{array}
Find closest multiple of 24 to 135. We see that 5 \times 24 = 120 is the nearest. Now subtract 120 from 135 to get reminder 15. Add 5 to quotient.
\begin{array}{l}\phantom{24)}005\phantom{7}\\24\overline{)13568}\\\phantom{24)}\underline{\phantom{}120\phantom{99}}\\\phantom{24)9}156\\\end{array}
Use the 4^{th} digit 6 from dividend 13568
\begin{array}{l}\phantom{24)}0056\phantom{8}\\24\overline{)13568}\\\phantom{24)}\underline{\phantom{}120\phantom{99}}\\\phantom{24)9}156\\\phantom{24)}\underline{\phantom{9}144\phantom{9}}\\\phantom{24)99}12\\\end{array}
Find closest multiple of 24 to 156. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 156 to get reminder 12. Add 6 to quotient.
\begin{array}{l}\phantom{24)}0056\phantom{9}\\24\overline{)13568}\\\phantom{24)}\underline{\phantom{}120\phantom{99}}\\\phantom{24)9}156\\\phantom{24)}\underline{\phantom{9}144\phantom{9}}\\\phantom{24)99}128\\\end{array}
Use the 5^{th} digit 8 from dividend 13568
\begin{array}{l}\phantom{24)}00565\phantom{10}\\24\overline{)13568}\\\phantom{24)}\underline{\phantom{}120\phantom{99}}\\\phantom{24)9}156\\\phantom{24)}\underline{\phantom{9}144\phantom{9}}\\\phantom{24)99}128\\\phantom{24)}\underline{\phantom{99}120\phantom{}}\\\phantom{24)9999}8\\\end{array}
Find closest multiple of 24 to 128. We see that 5 \times 24 = 120 is the nearest. Now subtract 120 from 128 to get reminder 8. Add 5 to quotient.
\text{Quotient: }565 \text{Reminder: }8
Since 8 is less than 24, stop the division. The reminder is 8. The topmost line 00565 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 565.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}