Evaluate
\frac{338}{335}\approx 1.008955224
Factor
\frac{2 \cdot 13 ^ {2}}{5 \cdot 67} = 1\frac{3}{335} = 1.008955223880597
Share
Copied to clipboard
\begin{array}{l}\phantom{1340)}\phantom{1}\\1340\overline{)1352}\\\end{array}
Use the 1^{st} digit 1 from dividend 1352
\begin{array}{l}\phantom{1340)}0\phantom{2}\\1340\overline{)1352}\\\end{array}
Since 1 is less than 1340, use the next digit 3 from dividend 1352 and add 0 to the quotient
\begin{array}{l}\phantom{1340)}0\phantom{3}\\1340\overline{)1352}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1352
\begin{array}{l}\phantom{1340)}00\phantom{4}\\1340\overline{)1352}\\\end{array}
Since 13 is less than 1340, use the next digit 5 from dividend 1352 and add 0 to the quotient
\begin{array}{l}\phantom{1340)}00\phantom{5}\\1340\overline{)1352}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1352
\begin{array}{l}\phantom{1340)}000\phantom{6}\\1340\overline{)1352}\\\end{array}
Since 135 is less than 1340, use the next digit 2 from dividend 1352 and add 0 to the quotient
\begin{array}{l}\phantom{1340)}000\phantom{7}\\1340\overline{)1352}\\\end{array}
Use the 4^{th} digit 2 from dividend 1352
\begin{array}{l}\phantom{1340)}0001\phantom{8}\\1340\overline{)1352}\\\phantom{1340)}\underline{\phantom{}1340\phantom{}}\\\phantom{1340)99}12\\\end{array}
Find closest multiple of 1340 to 1352. We see that 1 \times 1340 = 1340 is the nearest. Now subtract 1340 from 1352 to get reminder 12. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }12
Since 12 is less than 1340, stop the division. The reminder is 12. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}