Evaluate
\frac{9}{4}=2.25
Factor
\frac{3 ^ {2}}{2 ^ {2}} = 2\frac{1}{4} = 2.25
Share
Copied to clipboard
\begin{array}{l}\phantom{600)}\phantom{1}\\600\overline{)1350}\\\end{array}
Use the 1^{st} digit 1 from dividend 1350
\begin{array}{l}\phantom{600)}0\phantom{2}\\600\overline{)1350}\\\end{array}
Since 1 is less than 600, use the next digit 3 from dividend 1350 and add 0 to the quotient
\begin{array}{l}\phantom{600)}0\phantom{3}\\600\overline{)1350}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1350
\begin{array}{l}\phantom{600)}00\phantom{4}\\600\overline{)1350}\\\end{array}
Since 13 is less than 600, use the next digit 5 from dividend 1350 and add 0 to the quotient
\begin{array}{l}\phantom{600)}00\phantom{5}\\600\overline{)1350}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1350
\begin{array}{l}\phantom{600)}000\phantom{6}\\600\overline{)1350}\\\end{array}
Since 135 is less than 600, use the next digit 0 from dividend 1350 and add 0 to the quotient
\begin{array}{l}\phantom{600)}000\phantom{7}\\600\overline{)1350}\\\end{array}
Use the 4^{th} digit 0 from dividend 1350
\begin{array}{l}\phantom{600)}0002\phantom{8}\\600\overline{)1350}\\\phantom{600)}\underline{\phantom{}1200\phantom{}}\\\phantom{600)9}150\\\end{array}
Find closest multiple of 600 to 1350. We see that 2 \times 600 = 1200 is the nearest. Now subtract 1200 from 1350 to get reminder 150. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }150
Since 150 is less than 600, stop the division. The reminder is 150. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}