Solve for w
w=\frac{219}{2}-y-x
Solve for x
x=\frac{219}{2}-w-y
Graph
Share
Copied to clipboard
141+2w+2x+2y=360
Add 135 and 6 to get 141.
2w+2x+2y=360-141
Subtract 141 from both sides.
2w+2x+2y=219
Subtract 141 from 360 to get 219.
2w+2y=219-2x
Subtract 2x from both sides.
2w=219-2x-2y
Subtract 2y from both sides.
2w=219-2y-2x
The equation is in standard form.
\frac{2w}{2}=\frac{219-2y-2x}{2}
Divide both sides by 2.
w=\frac{219-2y-2x}{2}
Dividing by 2 undoes the multiplication by 2.
w=\frac{219}{2}-y-x
Divide 219-2x-2y by 2.
141+2w+2x+2y=360
Add 135 and 6 to get 141.
2w+2x+2y=360-141
Subtract 141 from both sides.
2w+2x+2y=219
Subtract 141 from 360 to get 219.
2x+2y=219-2w
Subtract 2w from both sides.
2x=219-2w-2y
Subtract 2y from both sides.
\frac{2x}{2}=\frac{219-2w-2y}{2}
Divide both sides by 2.
x=\frac{219-2w-2y}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{219}{2}-w-y
Divide 219-2w-2y by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}