135 \% \text { of } 342 - 342 \% \text { of } 13.5 = ?
Evaluate
415.53
Factor
\frac{19 \cdot 3 ^ {7}}{2 ^ {2} \cdot 5 ^ {2}} = 415\frac{53}{100} = 415.53
Share
Copied to clipboard
\frac{27}{20}\times 342-\frac{342}{100}\times 13.5
Reduce the fraction \frac{135}{100} to lowest terms by extracting and canceling out 5.
\frac{27\times 342}{20}-\frac{342}{100}\times 13.5
Express \frac{27}{20}\times 342 as a single fraction.
\frac{9234}{20}-\frac{342}{100}\times 13.5
Multiply 27 and 342 to get 9234.
\frac{4617}{10}-\frac{342}{100}\times 13.5
Reduce the fraction \frac{9234}{20} to lowest terms by extracting and canceling out 2.
\frac{4617}{10}-\frac{171}{50}\times 13.5
Reduce the fraction \frac{342}{100} to lowest terms by extracting and canceling out 2.
\frac{4617}{10}-\frac{171}{50}\times \frac{27}{2}
Convert decimal number 13.5 to fraction \frac{135}{10}. Reduce the fraction \frac{135}{10} to lowest terms by extracting and canceling out 5.
\frac{4617}{10}-\frac{171\times 27}{50\times 2}
Multiply \frac{171}{50} times \frac{27}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{4617}{10}-\frac{4617}{100}
Do the multiplications in the fraction \frac{171\times 27}{50\times 2}.
\frac{46170}{100}-\frac{4617}{100}
Least common multiple of 10 and 100 is 100. Convert \frac{4617}{10} and \frac{4617}{100} to fractions with denominator 100.
\frac{46170-4617}{100}
Since \frac{46170}{100} and \frac{4617}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{41553}{100}
Subtract 4617 from 46170 to get 41553.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}