Evaluate
\frac{76873}{7}\approx 10981.857142857
Factor
\frac{76873}{7} = 10981\frac{6}{7} = 10981.857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{1225)}\phantom{1}\\1225\overline{)13452775}\\\end{array}
Use the 1^{st} digit 1 from dividend 13452775
\begin{array}{l}\phantom{1225)}0\phantom{2}\\1225\overline{)13452775}\\\end{array}
Since 1 is less than 1225, use the next digit 3 from dividend 13452775 and add 0 to the quotient
\begin{array}{l}\phantom{1225)}0\phantom{3}\\1225\overline{)13452775}\\\end{array}
Use the 2^{nd} digit 3 from dividend 13452775
\begin{array}{l}\phantom{1225)}00\phantom{4}\\1225\overline{)13452775}\\\end{array}
Since 13 is less than 1225, use the next digit 4 from dividend 13452775 and add 0 to the quotient
\begin{array}{l}\phantom{1225)}00\phantom{5}\\1225\overline{)13452775}\\\end{array}
Use the 3^{rd} digit 4 from dividend 13452775
\begin{array}{l}\phantom{1225)}000\phantom{6}\\1225\overline{)13452775}\\\end{array}
Since 134 is less than 1225, use the next digit 5 from dividend 13452775 and add 0 to the quotient
\begin{array}{l}\phantom{1225)}000\phantom{7}\\1225\overline{)13452775}\\\end{array}
Use the 4^{th} digit 5 from dividend 13452775
\begin{array}{l}\phantom{1225)}0001\phantom{8}\\1225\overline{)13452775}\\\phantom{1225)}\underline{\phantom{}1225\phantom{9999}}\\\phantom{1225)9}120\\\end{array}
Find closest multiple of 1225 to 1345. We see that 1 \times 1225 = 1225 is the nearest. Now subtract 1225 from 1345 to get reminder 120. Add 1 to quotient.
\begin{array}{l}\phantom{1225)}0001\phantom{9}\\1225\overline{)13452775}\\\phantom{1225)}\underline{\phantom{}1225\phantom{9999}}\\\phantom{1225)9}1202\\\end{array}
Use the 5^{th} digit 2 from dividend 13452775
\begin{array}{l}\phantom{1225)}00010\phantom{10}\\1225\overline{)13452775}\\\phantom{1225)}\underline{\phantom{}1225\phantom{9999}}\\\phantom{1225)9}1202\\\end{array}
Since 1202 is less than 1225, use the next digit 7 from dividend 13452775 and add 0 to the quotient
\begin{array}{l}\phantom{1225)}00010\phantom{11}\\1225\overline{)13452775}\\\phantom{1225)}\underline{\phantom{}1225\phantom{9999}}\\\phantom{1225)9}12027\\\end{array}
Use the 6^{th} digit 7 from dividend 13452775
\begin{array}{l}\phantom{1225)}000109\phantom{12}\\1225\overline{)13452775}\\\phantom{1225)}\underline{\phantom{}1225\phantom{9999}}\\\phantom{1225)9}12027\\\phantom{1225)}\underline{\phantom{9}11025\phantom{99}}\\\phantom{1225)99}1002\\\end{array}
Find closest multiple of 1225 to 12027. We see that 9 \times 1225 = 11025 is the nearest. Now subtract 11025 from 12027 to get reminder 1002. Add 9 to quotient.
\begin{array}{l}\phantom{1225)}000109\phantom{13}\\1225\overline{)13452775}\\\phantom{1225)}\underline{\phantom{}1225\phantom{9999}}\\\phantom{1225)9}12027\\\phantom{1225)}\underline{\phantom{9}11025\phantom{99}}\\\phantom{1225)99}10027\\\end{array}
Use the 7^{th} digit 7 from dividend 13452775
\begin{array}{l}\phantom{1225)}0001098\phantom{14}\\1225\overline{)13452775}\\\phantom{1225)}\underline{\phantom{}1225\phantom{9999}}\\\phantom{1225)9}12027\\\phantom{1225)}\underline{\phantom{9}11025\phantom{99}}\\\phantom{1225)99}10027\\\phantom{1225)}\underline{\phantom{999}9800\phantom{9}}\\\phantom{1225)9999}227\\\end{array}
Find closest multiple of 1225 to 10027. We see that 8 \times 1225 = 9800 is the nearest. Now subtract 9800 from 10027 to get reminder 227. Add 8 to quotient.
\begin{array}{l}\phantom{1225)}0001098\phantom{15}\\1225\overline{)13452775}\\\phantom{1225)}\underline{\phantom{}1225\phantom{9999}}\\\phantom{1225)9}12027\\\phantom{1225)}\underline{\phantom{9}11025\phantom{99}}\\\phantom{1225)99}10027\\\phantom{1225)}\underline{\phantom{999}9800\phantom{9}}\\\phantom{1225)9999}2275\\\end{array}
Use the 8^{th} digit 5 from dividend 13452775
\begin{array}{l}\phantom{1225)}00010981\phantom{16}\\1225\overline{)13452775}\\\phantom{1225)}\underline{\phantom{}1225\phantom{9999}}\\\phantom{1225)9}12027\\\phantom{1225)}\underline{\phantom{9}11025\phantom{99}}\\\phantom{1225)99}10027\\\phantom{1225)}\underline{\phantom{999}9800\phantom{9}}\\\phantom{1225)9999}2275\\\phantom{1225)}\underline{\phantom{9999}1225\phantom{}}\\\phantom{1225)9999}1050\\\end{array}
Find closest multiple of 1225 to 2275. We see that 1 \times 1225 = 1225 is the nearest. Now subtract 1225 from 2275 to get reminder 1050. Add 1 to quotient.
\text{Quotient: }10981 \text{Reminder: }1050
Since 1050 is less than 1225, stop the division. The reminder is 1050. The topmost line 00010981 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10981.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}