Solve for n
n=\frac{\sqrt{53305}}{10}-\frac{1}{2}\approx 22.587875606
n=-\frac{\sqrt{53305}}{10}-\frac{1}{2}\approx -23.587875606
Share
Copied to clipboard
25n^{2}+25n=13320
Swap sides so that all variable terms are on the left hand side.
25n^{2}+25n-13320=0
Subtract 13320 from both sides.
n=\frac{-25±\sqrt{25^{2}-4\times 25\left(-13320\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 25 for b, and -13320 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-25±\sqrt{625-4\times 25\left(-13320\right)}}{2\times 25}
Square 25.
n=\frac{-25±\sqrt{625-100\left(-13320\right)}}{2\times 25}
Multiply -4 times 25.
n=\frac{-25±\sqrt{625+1332000}}{2\times 25}
Multiply -100 times -13320.
n=\frac{-25±\sqrt{1332625}}{2\times 25}
Add 625 to 1332000.
n=\frac{-25±5\sqrt{53305}}{2\times 25}
Take the square root of 1332625.
n=\frac{-25±5\sqrt{53305}}{50}
Multiply 2 times 25.
n=\frac{5\sqrt{53305}-25}{50}
Now solve the equation n=\frac{-25±5\sqrt{53305}}{50} when ± is plus. Add -25 to 5\sqrt{53305}.
n=\frac{\sqrt{53305}}{10}-\frac{1}{2}
Divide -25+5\sqrt{53305} by 50.
n=\frac{-5\sqrt{53305}-25}{50}
Now solve the equation n=\frac{-25±5\sqrt{53305}}{50} when ± is minus. Subtract 5\sqrt{53305} from -25.
n=-\frac{\sqrt{53305}}{10}-\frac{1}{2}
Divide -25-5\sqrt{53305} by 50.
n=\frac{\sqrt{53305}}{10}-\frac{1}{2} n=-\frac{\sqrt{53305}}{10}-\frac{1}{2}
The equation is now solved.
25n^{2}+25n=13320
Swap sides so that all variable terms are on the left hand side.
\frac{25n^{2}+25n}{25}=\frac{13320}{25}
Divide both sides by 25.
n^{2}+\frac{25}{25}n=\frac{13320}{25}
Dividing by 25 undoes the multiplication by 25.
n^{2}+n=\frac{13320}{25}
Divide 25 by 25.
n^{2}+n=\frac{2664}{5}
Reduce the fraction \frac{13320}{25} to lowest terms by extracting and canceling out 5.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=\frac{2664}{5}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+n+\frac{1}{4}=\frac{2664}{5}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+n+\frac{1}{4}=\frac{10661}{20}
Add \frac{2664}{5} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{1}{2}\right)^{2}=\frac{10661}{20}
Factor n^{2}+n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{10661}{20}}
Take the square root of both sides of the equation.
n+\frac{1}{2}=\frac{\sqrt{53305}}{10} n+\frac{1}{2}=-\frac{\sqrt{53305}}{10}
Simplify.
n=\frac{\sqrt{53305}}{10}-\frac{1}{2} n=-\frac{\sqrt{53305}}{10}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}