Solve for x
x=\frac{\sqrt{15577}-129}{133}\approx -0.031519907
x=\frac{-\sqrt{15577}-129}{133}\approx -1.908329717
Graph
Share
Copied to clipboard
133x^{2}+266x+9=8x+1
Use the distributive property to multiply 133x by x+2.
133x^{2}+266x+9-8x=1
Subtract 8x from both sides.
133x^{2}+258x+9=1
Combine 266x and -8x to get 258x.
133x^{2}+258x+9-1=0
Subtract 1 from both sides.
133x^{2}+258x+8=0
Subtract 1 from 9 to get 8.
x=\frac{-258±\sqrt{258^{2}-4\times 133\times 8}}{2\times 133}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 133 for a, 258 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-258±\sqrt{66564-4\times 133\times 8}}{2\times 133}
Square 258.
x=\frac{-258±\sqrt{66564-532\times 8}}{2\times 133}
Multiply -4 times 133.
x=\frac{-258±\sqrt{66564-4256}}{2\times 133}
Multiply -532 times 8.
x=\frac{-258±\sqrt{62308}}{2\times 133}
Add 66564 to -4256.
x=\frac{-258±2\sqrt{15577}}{2\times 133}
Take the square root of 62308.
x=\frac{-258±2\sqrt{15577}}{266}
Multiply 2 times 133.
x=\frac{2\sqrt{15577}-258}{266}
Now solve the equation x=\frac{-258±2\sqrt{15577}}{266} when ± is plus. Add -258 to 2\sqrt{15577}.
x=\frac{\sqrt{15577}-129}{133}
Divide -258+2\sqrt{15577} by 266.
x=\frac{-2\sqrt{15577}-258}{266}
Now solve the equation x=\frac{-258±2\sqrt{15577}}{266} when ± is minus. Subtract 2\sqrt{15577} from -258.
x=\frac{-\sqrt{15577}-129}{133}
Divide -258-2\sqrt{15577} by 266.
x=\frac{\sqrt{15577}-129}{133} x=\frac{-\sqrt{15577}-129}{133}
The equation is now solved.
133x^{2}+266x+9=8x+1
Use the distributive property to multiply 133x by x+2.
133x^{2}+266x+9-8x=1
Subtract 8x from both sides.
133x^{2}+258x+9=1
Combine 266x and -8x to get 258x.
133x^{2}+258x=1-9
Subtract 9 from both sides.
133x^{2}+258x=-8
Subtract 9 from 1 to get -8.
\frac{133x^{2}+258x}{133}=-\frac{8}{133}
Divide both sides by 133.
x^{2}+\frac{258}{133}x=-\frac{8}{133}
Dividing by 133 undoes the multiplication by 133.
x^{2}+\frac{258}{133}x+\left(\frac{129}{133}\right)^{2}=-\frac{8}{133}+\left(\frac{129}{133}\right)^{2}
Divide \frac{258}{133}, the coefficient of the x term, by 2 to get \frac{129}{133}. Then add the square of \frac{129}{133} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{258}{133}x+\frac{16641}{17689}=-\frac{8}{133}+\frac{16641}{17689}
Square \frac{129}{133} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{258}{133}x+\frac{16641}{17689}=\frac{15577}{17689}
Add -\frac{8}{133} to \frac{16641}{17689} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{129}{133}\right)^{2}=\frac{15577}{17689}
Factor x^{2}+\frac{258}{133}x+\frac{16641}{17689}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{129}{133}\right)^{2}}=\sqrt{\frac{15577}{17689}}
Take the square root of both sides of the equation.
x+\frac{129}{133}=\frac{\sqrt{15577}}{133} x+\frac{129}{133}=-\frac{\sqrt{15577}}{133}
Simplify.
x=\frac{\sqrt{15577}-129}{133} x=\frac{-\sqrt{15577}-129}{133}
Subtract \frac{129}{133} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}