Evaluate
\frac{133}{26}\approx 5.115384615
Factor
\frac{7 \cdot 19}{2 \cdot 13} = 5\frac{3}{26} = 5.115384615384615
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)133}\\\end{array}
Use the 1^{st} digit 1 from dividend 133
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)133}\\\end{array}
Since 1 is less than 26, use the next digit 3 from dividend 133 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)133}\\\end{array}
Use the 2^{nd} digit 3 from dividend 133
\begin{array}{l}\phantom{26)}00\phantom{4}\\26\overline{)133}\\\end{array}
Since 13 is less than 26, use the next digit 3 from dividend 133 and add 0 to the quotient
\begin{array}{l}\phantom{26)}00\phantom{5}\\26\overline{)133}\\\end{array}
Use the 3^{rd} digit 3 from dividend 133
\begin{array}{l}\phantom{26)}005\phantom{6}\\26\overline{)133}\\\phantom{26)}\underline{\phantom{}130\phantom{}}\\\phantom{26)99}3\\\end{array}
Find closest multiple of 26 to 133. We see that 5 \times 26 = 130 is the nearest. Now subtract 130 from 133 to get reminder 3. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }3
Since 3 is less than 26, stop the division. The reminder is 3. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}