Evaluate
\frac{133}{17}\approx 7.823529412
Factor
\frac{7 \cdot 19}{17} = 7\frac{14}{17} = 7.823529411764706
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)133}\\\end{array}
Use the 1^{st} digit 1 from dividend 133
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)133}\\\end{array}
Since 1 is less than 17, use the next digit 3 from dividend 133 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)133}\\\end{array}
Use the 2^{nd} digit 3 from dividend 133
\begin{array}{l}\phantom{17)}00\phantom{4}\\17\overline{)133}\\\end{array}
Since 13 is less than 17, use the next digit 3 from dividend 133 and add 0 to the quotient
\begin{array}{l}\phantom{17)}00\phantom{5}\\17\overline{)133}\\\end{array}
Use the 3^{rd} digit 3 from dividend 133
\begin{array}{l}\phantom{17)}007\phantom{6}\\17\overline{)133}\\\phantom{17)}\underline{\phantom{}119\phantom{}}\\\phantom{17)9}14\\\end{array}
Find closest multiple of 17 to 133. We see that 7 \times 17 = 119 is the nearest. Now subtract 119 from 133 to get reminder 14. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }14
Since 14 is less than 17, stop the division. The reminder is 14. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}