Solve for a (complex solution)
a=\sqrt{141}-2\approx 9.874342087
a=-\left(\sqrt{141}+2\right)\approx -13.874342087
Solve for a
a=\sqrt{141}-2\approx 9.874342087
a=-\sqrt{141}-2\approx -13.874342087
Share
Copied to clipboard
133=a+a^{2}+2a+1+a+2-7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+1\right)^{2}.
133=3a+a^{2}+1+a+2-7
Combine a and 2a to get 3a.
133=4a+a^{2}+1+2-7
Combine 3a and a to get 4a.
133=4a+a^{2}+3-7
Add 1 and 2 to get 3.
133=4a+a^{2}-4
Subtract 7 from 3 to get -4.
4a+a^{2}-4=133
Swap sides so that all variable terms are on the left hand side.
4a+a^{2}-4-133=0
Subtract 133 from both sides.
4a+a^{2}-137=0
Subtract 133 from -4 to get -137.
a^{2}+4a-137=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-4±\sqrt{4^{2}-4\left(-137\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -137 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±\sqrt{16-4\left(-137\right)}}{2}
Square 4.
a=\frac{-4±\sqrt{16+548}}{2}
Multiply -4 times -137.
a=\frac{-4±\sqrt{564}}{2}
Add 16 to 548.
a=\frac{-4±2\sqrt{141}}{2}
Take the square root of 564.
a=\frac{2\sqrt{141}-4}{2}
Now solve the equation a=\frac{-4±2\sqrt{141}}{2} when ± is plus. Add -4 to 2\sqrt{141}.
a=\sqrt{141}-2
Divide -4+2\sqrt{141} by 2.
a=\frac{-2\sqrt{141}-4}{2}
Now solve the equation a=\frac{-4±2\sqrt{141}}{2} when ± is minus. Subtract 2\sqrt{141} from -4.
a=-\sqrt{141}-2
Divide -4-2\sqrt{141} by 2.
a=\sqrt{141}-2 a=-\sqrt{141}-2
The equation is now solved.
133=a+a^{2}+2a+1+a+2-7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+1\right)^{2}.
133=3a+a^{2}+1+a+2-7
Combine a and 2a to get 3a.
133=4a+a^{2}+1+2-7
Combine 3a and a to get 4a.
133=4a+a^{2}+3-7
Add 1 and 2 to get 3.
133=4a+a^{2}-4
Subtract 7 from 3 to get -4.
4a+a^{2}-4=133
Swap sides so that all variable terms are on the left hand side.
4a+a^{2}=133+4
Add 4 to both sides.
4a+a^{2}=137
Add 133 and 4 to get 137.
a^{2}+4a=137
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}+4a+2^{2}=137+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+4a+4=137+4
Square 2.
a^{2}+4a+4=141
Add 137 to 4.
\left(a+2\right)^{2}=141
Factor a^{2}+4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{141}
Take the square root of both sides of the equation.
a+2=\sqrt{141} a+2=-\sqrt{141}
Simplify.
a=\sqrt{141}-2 a=-\sqrt{141}-2
Subtract 2 from both sides of the equation.
133=a+a^{2}+2a+1+a+2-7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+1\right)^{2}.
133=3a+a^{2}+1+a+2-7
Combine a and 2a to get 3a.
133=4a+a^{2}+1+2-7
Combine 3a and a to get 4a.
133=4a+a^{2}+3-7
Add 1 and 2 to get 3.
133=4a+a^{2}-4
Subtract 7 from 3 to get -4.
4a+a^{2}-4=133
Swap sides so that all variable terms are on the left hand side.
4a+a^{2}-4-133=0
Subtract 133 from both sides.
4a+a^{2}-137=0
Subtract 133 from -4 to get -137.
a^{2}+4a-137=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-4±\sqrt{4^{2}-4\left(-137\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -137 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±\sqrt{16-4\left(-137\right)}}{2}
Square 4.
a=\frac{-4±\sqrt{16+548}}{2}
Multiply -4 times -137.
a=\frac{-4±\sqrt{564}}{2}
Add 16 to 548.
a=\frac{-4±2\sqrt{141}}{2}
Take the square root of 564.
a=\frac{2\sqrt{141}-4}{2}
Now solve the equation a=\frac{-4±2\sqrt{141}}{2} when ± is plus. Add -4 to 2\sqrt{141}.
a=\sqrt{141}-2
Divide -4+2\sqrt{141} by 2.
a=\frac{-2\sqrt{141}-4}{2}
Now solve the equation a=\frac{-4±2\sqrt{141}}{2} when ± is minus. Subtract 2\sqrt{141} from -4.
a=-\sqrt{141}-2
Divide -4-2\sqrt{141} by 2.
a=\sqrt{141}-2 a=-\sqrt{141}-2
The equation is now solved.
133=a+a^{2}+2a+1+a+2-7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+1\right)^{2}.
133=3a+a^{2}+1+a+2-7
Combine a and 2a to get 3a.
133=4a+a^{2}+1+2-7
Combine 3a and a to get 4a.
133=4a+a^{2}+3-7
Add 1 and 2 to get 3.
133=4a+a^{2}-4
Subtract 7 from 3 to get -4.
4a+a^{2}-4=133
Swap sides so that all variable terms are on the left hand side.
4a+a^{2}=133+4
Add 4 to both sides.
4a+a^{2}=137
Add 133 and 4 to get 137.
a^{2}+4a=137
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}+4a+2^{2}=137+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+4a+4=137+4
Square 2.
a^{2}+4a+4=141
Add 137 to 4.
\left(a+2\right)^{2}=141
Factor a^{2}+4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{141}
Take the square root of both sides of the equation.
a+2=\sqrt{141} a+2=-\sqrt{141}
Simplify.
a=\sqrt{141}-2 a=-\sqrt{141}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}