Evaluate
\frac{663}{590}\approx 1.123728814
Factor
\frac{3 \cdot 13 \cdot 17}{2 \cdot 5 \cdot 59} = 1\frac{73}{590} = 1.123728813559322
Share
Copied to clipboard
\begin{array}{l}\phantom{1180)}\phantom{1}\\1180\overline{)1326}\\\end{array}
Use the 1^{st} digit 1 from dividend 1326
\begin{array}{l}\phantom{1180)}0\phantom{2}\\1180\overline{)1326}\\\end{array}
Since 1 is less than 1180, use the next digit 3 from dividend 1326 and add 0 to the quotient
\begin{array}{l}\phantom{1180)}0\phantom{3}\\1180\overline{)1326}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1326
\begin{array}{l}\phantom{1180)}00\phantom{4}\\1180\overline{)1326}\\\end{array}
Since 13 is less than 1180, use the next digit 2 from dividend 1326 and add 0 to the quotient
\begin{array}{l}\phantom{1180)}00\phantom{5}\\1180\overline{)1326}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1326
\begin{array}{l}\phantom{1180)}000\phantom{6}\\1180\overline{)1326}\\\end{array}
Since 132 is less than 1180, use the next digit 6 from dividend 1326 and add 0 to the quotient
\begin{array}{l}\phantom{1180)}000\phantom{7}\\1180\overline{)1326}\\\end{array}
Use the 4^{th} digit 6 from dividend 1326
\begin{array}{l}\phantom{1180)}0001\phantom{8}\\1180\overline{)1326}\\\phantom{1180)}\underline{\phantom{}1180\phantom{}}\\\phantom{1180)9}146\\\end{array}
Find closest multiple of 1180 to 1326. We see that 1 \times 1180 = 1180 is the nearest. Now subtract 1180 from 1326 to get reminder 146. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }146
Since 146 is less than 1180, stop the division. The reminder is 146. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}