Evaluate
\frac{33}{4}=8.25
Factor
\frac{3 \cdot 11}{2 ^ {2}} = 8\frac{1}{4} = 8.25
Share
Copied to clipboard
\begin{array}{l}\phantom{160)}\phantom{1}\\160\overline{)1320}\\\end{array}
Use the 1^{st} digit 1 from dividend 1320
\begin{array}{l}\phantom{160)}0\phantom{2}\\160\overline{)1320}\\\end{array}
Since 1 is less than 160, use the next digit 3 from dividend 1320 and add 0 to the quotient
\begin{array}{l}\phantom{160)}0\phantom{3}\\160\overline{)1320}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1320
\begin{array}{l}\phantom{160)}00\phantom{4}\\160\overline{)1320}\\\end{array}
Since 13 is less than 160, use the next digit 2 from dividend 1320 and add 0 to the quotient
\begin{array}{l}\phantom{160)}00\phantom{5}\\160\overline{)1320}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1320
\begin{array}{l}\phantom{160)}000\phantom{6}\\160\overline{)1320}\\\end{array}
Since 132 is less than 160, use the next digit 0 from dividend 1320 and add 0 to the quotient
\begin{array}{l}\phantom{160)}000\phantom{7}\\160\overline{)1320}\\\end{array}
Use the 4^{th} digit 0 from dividend 1320
\begin{array}{l}\phantom{160)}0008\phantom{8}\\160\overline{)1320}\\\phantom{160)}\underline{\phantom{}1280\phantom{}}\\\phantom{160)99}40\\\end{array}
Find closest multiple of 160 to 1320. We see that 8 \times 160 = 1280 is the nearest. Now subtract 1280 from 1320 to get reminder 40. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }40
Since 40 is less than 160, stop the division. The reminder is 40. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}