Solve for x
x=5-\sqrt{14}\approx 1.258342613
x=\sqrt{14}+5\approx 8.741657387
Graph
Share
Copied to clipboard
1320=3000-\left(100-40x+4x^{2}\right)\times 30
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2x\right)^{2}.
1320=3000-\left(3000-1200x+120x^{2}\right)
Use the distributive property to multiply 100-40x+4x^{2} by 30.
1320=3000-3000+1200x-120x^{2}
To find the opposite of 3000-1200x+120x^{2}, find the opposite of each term.
1320=1200x-120x^{2}
Subtract 3000 from 3000 to get 0.
1200x-120x^{2}=1320
Swap sides so that all variable terms are on the left hand side.
1200x-120x^{2}-1320=0
Subtract 1320 from both sides.
-120x^{2}+1200x-1320=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1200±\sqrt{1200^{2}-4\left(-120\right)\left(-1320\right)}}{2\left(-120\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -120 for a, 1200 for b, and -1320 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1200±\sqrt{1440000-4\left(-120\right)\left(-1320\right)}}{2\left(-120\right)}
Square 1200.
x=\frac{-1200±\sqrt{1440000+480\left(-1320\right)}}{2\left(-120\right)}
Multiply -4 times -120.
x=\frac{-1200±\sqrt{1440000-633600}}{2\left(-120\right)}
Multiply 480 times -1320.
x=\frac{-1200±\sqrt{806400}}{2\left(-120\right)}
Add 1440000 to -633600.
x=\frac{-1200±240\sqrt{14}}{2\left(-120\right)}
Take the square root of 806400.
x=\frac{-1200±240\sqrt{14}}{-240}
Multiply 2 times -120.
x=\frac{240\sqrt{14}-1200}{-240}
Now solve the equation x=\frac{-1200±240\sqrt{14}}{-240} when ± is plus. Add -1200 to 240\sqrt{14}.
x=5-\sqrt{14}
Divide -1200+240\sqrt{14} by -240.
x=\frac{-240\sqrt{14}-1200}{-240}
Now solve the equation x=\frac{-1200±240\sqrt{14}}{-240} when ± is minus. Subtract 240\sqrt{14} from -1200.
x=\sqrt{14}+5
Divide -1200-240\sqrt{14} by -240.
x=5-\sqrt{14} x=\sqrt{14}+5
The equation is now solved.
1320=3000-\left(100-40x+4x^{2}\right)\times 30
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2x\right)^{2}.
1320=3000-\left(3000-1200x+120x^{2}\right)
Use the distributive property to multiply 100-40x+4x^{2} by 30.
1320=3000-3000+1200x-120x^{2}
To find the opposite of 3000-1200x+120x^{2}, find the opposite of each term.
1320=1200x-120x^{2}
Subtract 3000 from 3000 to get 0.
1200x-120x^{2}=1320
Swap sides so that all variable terms are on the left hand side.
-120x^{2}+1200x=1320
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-120x^{2}+1200x}{-120}=\frac{1320}{-120}
Divide both sides by -120.
x^{2}+\frac{1200}{-120}x=\frac{1320}{-120}
Dividing by -120 undoes the multiplication by -120.
x^{2}-10x=\frac{1320}{-120}
Divide 1200 by -120.
x^{2}-10x=-11
Divide 1320 by -120.
x^{2}-10x+\left(-5\right)^{2}=-11+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-11+25
Square -5.
x^{2}-10x+25=14
Add -11 to 25.
\left(x-5\right)^{2}=14
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x-5=\sqrt{14} x-5=-\sqrt{14}
Simplify.
x=\sqrt{14}+5 x=5-\sqrt{14}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}