Solve for x
x=-44
x=50
Graph
Share
Copied to clipboard
0.005x^{2}-0.03x+121=132
Swap sides so that all variable terms are on the left hand side.
0.005x^{2}-0.03x+121-132=0
Subtract 132 from both sides.
0.005x^{2}-0.03x-11=0
Subtract 132 from 121 to get -11.
x=\frac{-\left(-0.03\right)±\sqrt{\left(-0.03\right)^{2}-4\times 0.005\left(-11\right)}}{2\times 0.005}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.005 for a, -0.03 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.03\right)±\sqrt{0.0009-4\times 0.005\left(-11\right)}}{2\times 0.005}
Square -0.03 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.03\right)±\sqrt{0.0009-0.02\left(-11\right)}}{2\times 0.005}
Multiply -4 times 0.005.
x=\frac{-\left(-0.03\right)±\sqrt{0.0009+0.22}}{2\times 0.005}
Multiply -0.02 times -11.
x=\frac{-\left(-0.03\right)±\sqrt{0.2209}}{2\times 0.005}
Add 0.0009 to 0.22 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.03\right)±\frac{47}{100}}{2\times 0.005}
Take the square root of 0.2209.
x=\frac{0.03±\frac{47}{100}}{2\times 0.005}
The opposite of -0.03 is 0.03.
x=\frac{0.03±\frac{47}{100}}{0.01}
Multiply 2 times 0.005.
x=\frac{\frac{1}{2}}{0.01}
Now solve the equation x=\frac{0.03±\frac{47}{100}}{0.01} when ± is plus. Add 0.03 to \frac{47}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=50
Divide \frac{1}{2} by 0.01 by multiplying \frac{1}{2} by the reciprocal of 0.01.
x=-\frac{\frac{11}{25}}{0.01}
Now solve the equation x=\frac{0.03±\frac{47}{100}}{0.01} when ± is minus. Subtract \frac{47}{100} from 0.03 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-44
Divide -\frac{11}{25} by 0.01 by multiplying -\frac{11}{25} by the reciprocal of 0.01.
x=50 x=-44
The equation is now solved.
0.005x^{2}-0.03x+121=132
Swap sides so that all variable terms are on the left hand side.
0.005x^{2}-0.03x=132-121
Subtract 121 from both sides.
0.005x^{2}-0.03x=11
Subtract 121 from 132 to get 11.
\frac{0.005x^{2}-0.03x}{0.005}=\frac{11}{0.005}
Multiply both sides by 200.
x^{2}+\left(-\frac{0.03}{0.005}\right)x=\frac{11}{0.005}
Dividing by 0.005 undoes the multiplication by 0.005.
x^{2}-6x=\frac{11}{0.005}
Divide -0.03 by 0.005 by multiplying -0.03 by the reciprocal of 0.005.
x^{2}-6x=2200
Divide 11 by 0.005 by multiplying 11 by the reciprocal of 0.005.
x^{2}-6x+\left(-3\right)^{2}=2200+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=2200+9
Square -3.
x^{2}-6x+9=2209
Add 2200 to 9.
\left(x-3\right)^{2}=2209
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{2209}
Take the square root of both sides of the equation.
x-3=47 x-3=-47
Simplify.
x=50 x=-44
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}