132 = ( ( + 6 + c ) \frac { c + 2 } { 2 }
Solve for c
c=2\sqrt{67}-4\approx 12.370705544
c=-2\sqrt{67}-4\approx -20.370705544
Share
Copied to clipboard
264=\left(6+c\right)\left(c+2\right)
Multiply both sides of the equation by 2.
264=6c+12+c^{2}+2c
Apply the distributive property by multiplying each term of 6+c by each term of c+2.
264=8c+12+c^{2}
Combine 6c and 2c to get 8c.
8c+12+c^{2}=264
Swap sides so that all variable terms are on the left hand side.
8c+12+c^{2}-264=0
Subtract 264 from both sides.
8c-252+c^{2}=0
Subtract 264 from 12 to get -252.
c^{2}+8c-252=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-8±\sqrt{8^{2}-4\left(-252\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -252 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-8±\sqrt{64-4\left(-252\right)}}{2}
Square 8.
c=\frac{-8±\sqrt{64+1008}}{2}
Multiply -4 times -252.
c=\frac{-8±\sqrt{1072}}{2}
Add 64 to 1008.
c=\frac{-8±4\sqrt{67}}{2}
Take the square root of 1072.
c=\frac{4\sqrt{67}-8}{2}
Now solve the equation c=\frac{-8±4\sqrt{67}}{2} when ± is plus. Add -8 to 4\sqrt{67}.
c=2\sqrt{67}-4
Divide -8+4\sqrt{67} by 2.
c=\frac{-4\sqrt{67}-8}{2}
Now solve the equation c=\frac{-8±4\sqrt{67}}{2} when ± is minus. Subtract 4\sqrt{67} from -8.
c=-2\sqrt{67}-4
Divide -8-4\sqrt{67} by 2.
c=2\sqrt{67}-4 c=-2\sqrt{67}-4
The equation is now solved.
264=\left(6+c\right)\left(c+2\right)
Multiply both sides of the equation by 2.
264=6c+12+c^{2}+2c
Apply the distributive property by multiplying each term of 6+c by each term of c+2.
264=8c+12+c^{2}
Combine 6c and 2c to get 8c.
8c+12+c^{2}=264
Swap sides so that all variable terms are on the left hand side.
8c+c^{2}=264-12
Subtract 12 from both sides.
8c+c^{2}=252
Subtract 12 from 264 to get 252.
c^{2}+8c=252
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
c^{2}+8c+4^{2}=252+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+8c+16=252+16
Square 4.
c^{2}+8c+16=268
Add 252 to 16.
\left(c+4\right)^{2}=268
Factor c^{2}+8c+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+4\right)^{2}}=\sqrt{268}
Take the square root of both sides of the equation.
c+4=2\sqrt{67} c+4=-2\sqrt{67}
Simplify.
c=2\sqrt{67}-4 c=-2\sqrt{67}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}