Evaluate
\frac{32880}{13}\approx 2529.230769231
Factor
\frac{2 ^ {4} \cdot 3 \cdot 5 \cdot 137}{13} = 2529\frac{3}{13} = 2529.230769230769
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)131520}\\\end{array}
Use the 1^{st} digit 1 from dividend 131520
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)131520}\\\end{array}
Since 1 is less than 52, use the next digit 3 from dividend 131520 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)131520}\\\end{array}
Use the 2^{nd} digit 3 from dividend 131520
\begin{array}{l}\phantom{52)}00\phantom{4}\\52\overline{)131520}\\\end{array}
Since 13 is less than 52, use the next digit 1 from dividend 131520 and add 0 to the quotient
\begin{array}{l}\phantom{52)}00\phantom{5}\\52\overline{)131520}\\\end{array}
Use the 3^{rd} digit 1 from dividend 131520
\begin{array}{l}\phantom{52)}002\phantom{6}\\52\overline{)131520}\\\phantom{52)}\underline{\phantom{}104\phantom{999}}\\\phantom{52)9}27\\\end{array}
Find closest multiple of 52 to 131. We see that 2 \times 52 = 104 is the nearest. Now subtract 104 from 131 to get reminder 27. Add 2 to quotient.
\begin{array}{l}\phantom{52)}002\phantom{7}\\52\overline{)131520}\\\phantom{52)}\underline{\phantom{}104\phantom{999}}\\\phantom{52)9}275\\\end{array}
Use the 4^{th} digit 5 from dividend 131520
\begin{array}{l}\phantom{52)}0025\phantom{8}\\52\overline{)131520}\\\phantom{52)}\underline{\phantom{}104\phantom{999}}\\\phantom{52)9}275\\\phantom{52)}\underline{\phantom{9}260\phantom{99}}\\\phantom{52)99}15\\\end{array}
Find closest multiple of 52 to 275. We see that 5 \times 52 = 260 is the nearest. Now subtract 260 from 275 to get reminder 15. Add 5 to quotient.
\begin{array}{l}\phantom{52)}0025\phantom{9}\\52\overline{)131520}\\\phantom{52)}\underline{\phantom{}104\phantom{999}}\\\phantom{52)9}275\\\phantom{52)}\underline{\phantom{9}260\phantom{99}}\\\phantom{52)99}152\\\end{array}
Use the 5^{th} digit 2 from dividend 131520
\begin{array}{l}\phantom{52)}00252\phantom{10}\\52\overline{)131520}\\\phantom{52)}\underline{\phantom{}104\phantom{999}}\\\phantom{52)9}275\\\phantom{52)}\underline{\phantom{9}260\phantom{99}}\\\phantom{52)99}152\\\phantom{52)}\underline{\phantom{99}104\phantom{9}}\\\phantom{52)999}48\\\end{array}
Find closest multiple of 52 to 152. We see that 2 \times 52 = 104 is the nearest. Now subtract 104 from 152 to get reminder 48. Add 2 to quotient.
\begin{array}{l}\phantom{52)}00252\phantom{11}\\52\overline{)131520}\\\phantom{52)}\underline{\phantom{}104\phantom{999}}\\\phantom{52)9}275\\\phantom{52)}\underline{\phantom{9}260\phantom{99}}\\\phantom{52)99}152\\\phantom{52)}\underline{\phantom{99}104\phantom{9}}\\\phantom{52)999}480\\\end{array}
Use the 6^{th} digit 0 from dividend 131520
\begin{array}{l}\phantom{52)}002529\phantom{12}\\52\overline{)131520}\\\phantom{52)}\underline{\phantom{}104\phantom{999}}\\\phantom{52)9}275\\\phantom{52)}\underline{\phantom{9}260\phantom{99}}\\\phantom{52)99}152\\\phantom{52)}\underline{\phantom{99}104\phantom{9}}\\\phantom{52)999}480\\\phantom{52)}\underline{\phantom{999}468\phantom{}}\\\phantom{52)9999}12\\\end{array}
Find closest multiple of 52 to 480. We see that 9 \times 52 = 468 is the nearest. Now subtract 468 from 480 to get reminder 12. Add 9 to quotient.
\text{Quotient: }2529 \text{Reminder: }12
Since 12 is less than 52, stop the division. The reminder is 12. The topmost line 002529 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2529.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}