Evaluate
\frac{263}{104}\approx 2.528846154
Factor
\frac{263}{2 ^ {3} \cdot 13} = 2\frac{55}{104} = 2.5288461538461537
Share
Copied to clipboard
\begin{array}{l}\phantom{520)}\phantom{1}\\520\overline{)1315}\\\end{array}
Use the 1^{st} digit 1 from dividend 1315
\begin{array}{l}\phantom{520)}0\phantom{2}\\520\overline{)1315}\\\end{array}
Since 1 is less than 520, use the next digit 3 from dividend 1315 and add 0 to the quotient
\begin{array}{l}\phantom{520)}0\phantom{3}\\520\overline{)1315}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1315
\begin{array}{l}\phantom{520)}00\phantom{4}\\520\overline{)1315}\\\end{array}
Since 13 is less than 520, use the next digit 1 from dividend 1315 and add 0 to the quotient
\begin{array}{l}\phantom{520)}00\phantom{5}\\520\overline{)1315}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1315
\begin{array}{l}\phantom{520)}000\phantom{6}\\520\overline{)1315}\\\end{array}
Since 131 is less than 520, use the next digit 5 from dividend 1315 and add 0 to the quotient
\begin{array}{l}\phantom{520)}000\phantom{7}\\520\overline{)1315}\\\end{array}
Use the 4^{th} digit 5 from dividend 1315
\begin{array}{l}\phantom{520)}0002\phantom{8}\\520\overline{)1315}\\\phantom{520)}\underline{\phantom{}1040\phantom{}}\\\phantom{520)9}275\\\end{array}
Find closest multiple of 520 to 1315. We see that 2 \times 520 = 1040 is the nearest. Now subtract 1040 from 1315 to get reminder 275. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }275
Since 275 is less than 520, stop the division. The reminder is 275. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}