Solve for x
x=\frac{\sqrt{6304375986}}{122}-650\approx 0.820497274
x=-\frac{\sqrt{6304375986}}{122}-650\approx -1300.820497274
Graph
Share
Copied to clipboard
130213=\left(158600+122x\right)x
Use the distributive property to multiply 122 by 1300+x.
130213=158600x+122x^{2}
Use the distributive property to multiply 158600+122x by x.
158600x+122x^{2}=130213
Swap sides so that all variable terms are on the left hand side.
158600x+122x^{2}-130213=0
Subtract 130213 from both sides.
122x^{2}+158600x-130213=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-158600±\sqrt{158600^{2}-4\times 122\left(-130213\right)}}{2\times 122}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 122 for a, 158600 for b, and -130213 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-158600±\sqrt{25153960000-4\times 122\left(-130213\right)}}{2\times 122}
Square 158600.
x=\frac{-158600±\sqrt{25153960000-488\left(-130213\right)}}{2\times 122}
Multiply -4 times 122.
x=\frac{-158600±\sqrt{25153960000+63543944}}{2\times 122}
Multiply -488 times -130213.
x=\frac{-158600±\sqrt{25217503944}}{2\times 122}
Add 25153960000 to 63543944.
x=\frac{-158600±2\sqrt{6304375986}}{2\times 122}
Take the square root of 25217503944.
x=\frac{-158600±2\sqrt{6304375986}}{244}
Multiply 2 times 122.
x=\frac{2\sqrt{6304375986}-158600}{244}
Now solve the equation x=\frac{-158600±2\sqrt{6304375986}}{244} when ± is plus. Add -158600 to 2\sqrt{6304375986}.
x=\frac{\sqrt{6304375986}}{122}-650
Divide -158600+2\sqrt{6304375986} by 244.
x=\frac{-2\sqrt{6304375986}-158600}{244}
Now solve the equation x=\frac{-158600±2\sqrt{6304375986}}{244} when ± is minus. Subtract 2\sqrt{6304375986} from -158600.
x=-\frac{\sqrt{6304375986}}{122}-650
Divide -158600-2\sqrt{6304375986} by 244.
x=\frac{\sqrt{6304375986}}{122}-650 x=-\frac{\sqrt{6304375986}}{122}-650
The equation is now solved.
130213=\left(158600+122x\right)x
Use the distributive property to multiply 122 by 1300+x.
130213=158600x+122x^{2}
Use the distributive property to multiply 158600+122x by x.
158600x+122x^{2}=130213
Swap sides so that all variable terms are on the left hand side.
122x^{2}+158600x=130213
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{122x^{2}+158600x}{122}=\frac{130213}{122}
Divide both sides by 122.
x^{2}+\frac{158600}{122}x=\frac{130213}{122}
Dividing by 122 undoes the multiplication by 122.
x^{2}+1300x=\frac{130213}{122}
Divide 158600 by 122.
x^{2}+1300x+650^{2}=\frac{130213}{122}+650^{2}
Divide 1300, the coefficient of the x term, by 2 to get 650. Then add the square of 650 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+1300x+422500=\frac{130213}{122}+422500
Square 650.
x^{2}+1300x+422500=\frac{51675213}{122}
Add \frac{130213}{122} to 422500.
\left(x+650\right)^{2}=\frac{51675213}{122}
Factor x^{2}+1300x+422500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+650\right)^{2}}=\sqrt{\frac{51675213}{122}}
Take the square root of both sides of the equation.
x+650=\frac{\sqrt{6304375986}}{122} x+650=-\frac{\sqrt{6304375986}}{122}
Simplify.
x=\frac{\sqrt{6304375986}}{122}-650 x=-\frac{\sqrt{6304375986}}{122}-650
Subtract 650 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}