Solve for x
x=\frac{1}{10}=0.1
x = -\frac{21}{10} = -2\frac{1}{10} = -2.1
Graph
Share
Copied to clipboard
1300\left(1+x\right)^{2}=1573
To multiply powers of the same base, add their exponents. Add 1 and 1 to get 2.
1300\left(1+2x+x^{2}\right)=1573
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
1300+2600x+1300x^{2}=1573
Use the distributive property to multiply 1300 by 1+2x+x^{2}.
1300+2600x+1300x^{2}-1573=0
Subtract 1573 from both sides.
-273+2600x+1300x^{2}=0
Subtract 1573 from 1300 to get -273.
-21+200x+100x^{2}=0
Divide both sides by 13.
100x^{2}+200x-21=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=200 ab=100\left(-21\right)=-2100
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 100x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
-1,2100 -2,1050 -3,700 -4,525 -5,420 -6,350 -7,300 -10,210 -12,175 -14,150 -15,140 -20,105 -21,100 -25,84 -28,75 -30,70 -35,60 -42,50
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2100.
-1+2100=2099 -2+1050=1048 -3+700=697 -4+525=521 -5+420=415 -6+350=344 -7+300=293 -10+210=200 -12+175=163 -14+150=136 -15+140=125 -20+105=85 -21+100=79 -25+84=59 -28+75=47 -30+70=40 -35+60=25 -42+50=8
Calculate the sum for each pair.
a=-10 b=210
The solution is the pair that gives sum 200.
\left(100x^{2}-10x\right)+\left(210x-21\right)
Rewrite 100x^{2}+200x-21 as \left(100x^{2}-10x\right)+\left(210x-21\right).
10x\left(10x-1\right)+21\left(10x-1\right)
Factor out 10x in the first and 21 in the second group.
\left(10x-1\right)\left(10x+21\right)
Factor out common term 10x-1 by using distributive property.
x=\frac{1}{10} x=-\frac{21}{10}
To find equation solutions, solve 10x-1=0 and 10x+21=0.
1300\left(1+x\right)^{2}=1573
To multiply powers of the same base, add their exponents. Add 1 and 1 to get 2.
1300\left(1+2x+x^{2}\right)=1573
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
1300+2600x+1300x^{2}=1573
Use the distributive property to multiply 1300 by 1+2x+x^{2}.
1300+2600x+1300x^{2}-1573=0
Subtract 1573 from both sides.
-273+2600x+1300x^{2}=0
Subtract 1573 from 1300 to get -273.
1300x^{2}+2600x-273=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2600±\sqrt{2600^{2}-4\times 1300\left(-273\right)}}{2\times 1300}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1300 for a, 2600 for b, and -273 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2600±\sqrt{6760000-4\times 1300\left(-273\right)}}{2\times 1300}
Square 2600.
x=\frac{-2600±\sqrt{6760000-5200\left(-273\right)}}{2\times 1300}
Multiply -4 times 1300.
x=\frac{-2600±\sqrt{6760000+1419600}}{2\times 1300}
Multiply -5200 times -273.
x=\frac{-2600±\sqrt{8179600}}{2\times 1300}
Add 6760000 to 1419600.
x=\frac{-2600±2860}{2\times 1300}
Take the square root of 8179600.
x=\frac{-2600±2860}{2600}
Multiply 2 times 1300.
x=\frac{260}{2600}
Now solve the equation x=\frac{-2600±2860}{2600} when ± is plus. Add -2600 to 2860.
x=\frac{1}{10}
Reduce the fraction \frac{260}{2600} to lowest terms by extracting and canceling out 260.
x=-\frac{5460}{2600}
Now solve the equation x=\frac{-2600±2860}{2600} when ± is minus. Subtract 2860 from -2600.
x=-\frac{21}{10}
Reduce the fraction \frac{-5460}{2600} to lowest terms by extracting and canceling out 260.
x=\frac{1}{10} x=-\frac{21}{10}
The equation is now solved.
1300\left(1+x\right)^{2}=1573
To multiply powers of the same base, add their exponents. Add 1 and 1 to get 2.
1300\left(1+2x+x^{2}\right)=1573
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
1300+2600x+1300x^{2}=1573
Use the distributive property to multiply 1300 by 1+2x+x^{2}.
2600x+1300x^{2}=1573-1300
Subtract 1300 from both sides.
2600x+1300x^{2}=273
Subtract 1300 from 1573 to get 273.
1300x^{2}+2600x=273
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1300x^{2}+2600x}{1300}=\frac{273}{1300}
Divide both sides by 1300.
x^{2}+\frac{2600}{1300}x=\frac{273}{1300}
Dividing by 1300 undoes the multiplication by 1300.
x^{2}+2x=\frac{273}{1300}
Divide 2600 by 1300.
x^{2}+2x=\frac{21}{100}
Reduce the fraction \frac{273}{1300} to lowest terms by extracting and canceling out 13.
x^{2}+2x+1^{2}=\frac{21}{100}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{21}{100}+1
Square 1.
x^{2}+2x+1=\frac{121}{100}
Add \frac{21}{100} to 1.
\left(x+1\right)^{2}=\frac{121}{100}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{121}{100}}
Take the square root of both sides of the equation.
x+1=\frac{11}{10} x+1=-\frac{11}{10}
Simplify.
x=\frac{1}{10} x=-\frac{21}{10}
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}